Светодиоды с изменяемым цветом

Содержание

Синие светодиоды: мода против здравого смысла

Светодиоды с изменяемым цветом

Сергей Асмаков

Голубая мечта

Синяя роза — эмблема печали

Эффект Пуркинье

Не в фокусе

Тоска зеленая, бессонница синяя

«Синих» — с глаз долой!

На протяжении уже нескольких лет синие индикаторы являются одним из наиболее модных и распространенных украшений самых разнообразных устройств — начиная от портативных медиаплееров и мобильных телефонов и заканчивая компьютерами и системами домашнего кинотеатра. Однако у многих пользователей синее сияние вызывает раздражение и дискомфорт. Как выяснилось, проблема вызвана отнюдь не различием вкусов и личных пристрастий, а вполне объективными причинами.

Голубая мечта

Сегодня синие светодиоды встречаются практически везде: в компьютерах и периферийных устройствах, бытовой технике, автомобилях, мобильных телефонах, портативных медиаплеерах и т.д. Почему же именно синий цвет в одночасье стал таким модным? Чтобы ответить на этот вопрос, совершим небольшое путешествие во времени: перенесемся в недавнее прошлое — последнее десятилетие XX века.

Работа по созданию светодиодов, способных излучать синий свет, продвигалась с большим трудом. Инженеры никак не могли сдвинуться с мертвой точки. На протяжении уже двух с лишним десятилетий серийно выпускались светодиоды красного, зеленого, желтого и янтарного цветов. Однако синий цвет стал для разработчиков полупроводниковых приборов настоящим камнем преткновения.

Первым найти решение этой, как уже казалось, абсолютно невыполнимой задачи удалось японскому инженеру Шуджи Накамура (Shuji Nakamura).

Он понял, что главная ошибка его коллег состоит в том, что они пытаются адаптировать для изготовления синих светодиодов технологический процесс, который уже длительное время применяется для производства аналогичных приборов с красным, желтым и зеленым свечением.

Чтобы не наступать на те же грабли, Накамура начал решать задачу с чистого листа и в результате разработал совершенно новую технологию, которая позволила не только получить светодиоды столь желанного синего цвета, но и значительно повысить яркость излучаемого этими полупроводниковыми приборами света.

Разумеется, освоение любой новой технологии сопряжено с определенными издержками. На первых порах производство синих светодиодов было значительно более сложным и дорогостоящим по сравнению с хорошо отлаженным технологическим процессом, применявшимся для изготовления аналогичных компонентов, излучающих красный или зеленый свет. А следовательно, синие светодиоды были значительно дороже красных, зеленых и желтых.

Как это уже не раз бывало в истории человечества, длительный период ожидания в сочетании с дороговизной и сложностью изготовления стали причиной того, что синие светодиоды моментально попали в разряд ультрамодных аксессуаров.

Кроме того, начало серийного производства синих светодиодов совпало с наступлением нового тысячелетия, что оказалось весьма символичным. В 2000 году в продаже появились серийно выпускаемые устройства, оснащенные синими светодиодами. Синяя подсветка сразу же стала признаком престижа, «крутизны» и принадлежности к высоким технологиям.

Дизайнеры, занимающиеся созданием внешнего облика электронной техники и компьютеров, в тот период были практически поголовно помешаны на синем свечении.

Впрочем, волна «синего сумасшествия» затронула не только дизайнеров.

Три-четыре года назад «продвинутых» отечественных автовладельцев охватила самая настоящая эпидемия: синие лампочки и светодиоды устанавливали вместо штатных габаритных огней и указателей поворота, использовали в качестве украшений форсунок омывателей стекол и даже выхлопных труб.

К счастью, эта уродливая мода быстро прошла — отчасти потому, что экстравагантная синева за год-другой многим успела надоесть, а отчасти из-за введения штрафов за несоблюдение технических требований, предъявляемых к внешним световым приборам.

Надо сказать, что подобные парадоксы возникали и раньше. Достаточно вспомнить середину XIX века — начало промышленной добычи алюминия. На первых порах технологический процесс был очень дорогим, и соответственно цена этого материала была чрезвычайно высокой.

Например, в 1852 году килограмм алюминия оценивали примерно в 1200 долл.

, что заметно превышало удельную стоимость золота! Неудивительно, что в то время изделия из алюминия (в частности, посуда и украшения) ценились значительно выше товаров, изготовленных из благородных металлов, — даже несмотря на низкую прочность и невзрачный вид.

Но вернемся в начало нынешнего столетия. Потребовалось не так много времени, чтобы отладить технологию производства синих светодиодов. Благодаря значительному росту объемов производства этих комплектующих цены на них стали постепенно снижаться. По мере того как синие светодиоды становились более доступными, они все чаще использовались в самых разных устройствах. И вот тут-то появились проблемы.

Синяя роза — эмблема печали

Как оказалось, далеко не все пользователи разделяют взгляды дизайнеров, одержимых идеей осчастливить прогрессивное человечество завораживающим синим свечением. По данным опросов, многих покупателей электронных устройств яркие синие светодиоды настолько раздражают, что люди предпочитают заклеивать их или даже обрезать идущие к ним провода.

Вот что рассказал нам один из владельцев USB-концентратора с синим светодиодным индикатором: «Каждый раз, когда это устройство попадало в поле зрения, у меня возникало такое ощущение, что в глаз впивается острая игла. Это происходило даже в тех случаях, когда устройство располагалось сбоку, а исходящий от него синий свет воспринимался исключительно периферийным зрением.

В конце концов мне это надоело, и я закрасил злополучный светодиод черной краской».

Кстати, аналогичная история произошла весной этого года в нашей тестовой лаборатории, когда мы сравнивали акустические системы для ПК (см. публикацию «Акустика для ПК: 2.0 или 5.1?» в № 5’2007). Всего за несколько минут работы яркий синий светодиод, направленный точно в правый глаз, настолько надоел, что от греха подальше его заклеили лейкопластырем до окончания испытаний.

Почему же такие проблемы возникли именно с синими светодиодами? Неужели синий настолько отличается от других цветов — красного, зеленого или желтого? А ведь и в самом деле отличается — по крайней мере, с точки зрения нашего с вами восприятия.

Физиологи утверждают, что синий свет вызывает большее зрительное напряжение и более утомителен для глаз по сравнению с другими цветами. А, как уже было упомянуто, из-за использования принципиально иной технологии изготовления синие светодиоды примерно в 20 раз ярче, чем зеленые, красные или желтые. Есть и другие объективные факторы.

Эффект Пуркинье

Синий свет кажется более ярким в условиях слабой освещенности — например ночью или в затемненном помещении. Это явление называется эффектом Пуркинье и происходит вследствие того, что палочки (чувствительные элементы сетчатки глаза, воспринимающие слабый свет в монохроматическом режиме) наиболее чувствительны к излучению сине-зеленой части видимого спектра.

На практике это приводит к тому, что синие индикаторы или эффектная подсветка устройства (например, телевизора) нормально воспринимается при ярком освещении — например когда мы выбираем подходящую модель в демонстрационном зале супермаркета.

Однако тот же индикатор в полутемном помещении будет гораздо сильнее отвлекать от изображения на экране, вызывая сильное раздражение.

Эффект Пуркинье проявляется и в том случае, когда источник света находится в зоне периферийного зрения. В условиях средней и слабой освещенности наше периферийное зрение наиболее чувствительно к оттенкам синего и зеленого цветов.

С точки зрения физиологии это имеет вполне логичное объяснение: дело в том, что на периферийных участках сетчатки сосредоточено гораздо больше палочек, чем в центре.

Таким образом, синий свет способен оказывать отвлекающее воздействие даже в том случае, если взгляд в данный момент не сфокусирован на его источнике.

Таким образом, наличие синих светодиодов на панелях мониторов, телевизоров и других устройств, которые используются в затемненных помещениях, является серьезным конструктивным недостатком. Однако из года в год разработчики большинства компаний повторяют эту ошибку.

Не в фокусе

Глаз современного человека может различать наиболее тонкие детали в зеленой и красной частях видимого спектра. Но мы при всем желании не способны столь же четко различать объекты синего цвета. Наши глаза просто не могут нормально сфокусироваться на синих объектах. Фактически человек видит не сам объект, а лишь размытый ореол яркого синего света.

Это объясняется тем, что длина волны синего света меньше, чем у зеленого (под который «оптимизированы» наши глаза). Вследствие рефракции, наблюдающейся при прохождении через стекловидное тело глаза, проецируемый на сетчатку свет разлагается на спектральные составляющие, которые из-за разницы в длине волны фокусируются в различных точках.

Поскольку наилучшим образом глаз фокусируется на зеленой составляющей части видимого спектра, синяя оказывается сфокусированной не на сетчатке, а на некотором расстоянии перед ней — в результате мы воспринимаем синие объекты несколько размытыми (нечеткими).

Кроме того, из-за меньшей длины волны синий свет в большей степени подвержен рассеянию при прохождении через стекловидное тело, что также способствует возникновению ореолов вокруг синих объектов.

Чтобы рассмотреть детали объекта, освещенного исключительно синим светом, придется сильно напрягать глазные мышцы. При выполнении подобных «упражнений» на протяжении длительного времени возникает сильная головная боль. В этом может убедиться на собственном опыте любой обладатель мобильного телефона, оснащенного клавиатурой с синей подсветкой. В темноте различить символы на клавишах такого аппарата значительно сложнее, чем на трубках, оснащенных зеленой или желтой подсветкой.

Медики установили, что центральная область сетчатки глаза имеет пониженную чувствительность к синей части спектра. Как полагают ученые, таким образом природа сделала наше зрение более острым. Кстати, об этом свойстве зрения осведомлены охотники и профессиональные военные: например, для повышения остроты зрения в дневное время снайперы иногда надевают очки с желтыми стеклами, отфильтровывающими синюю составляющую.

Тоска зеленая, бессонница синяя

Неблагоприятное влияние искусственного синего света на наш сон — это не гипотеза, а доказанный научный факт. Результаты многочисленных экспериментов свидетельствуют, что синий свет способен изменять ход внутренних биологических часов человека, вызывая нарушения режима сна.

Своеобразная реакция наших глаз и мозга именно на синий свет является одним из следствий эволюционного процесса, в ходе которого организм человека адаптировался к естественным условиям жизни в природной среде нашей планеты.

Как известно, под действием синего света в крови снижается уровень мелатонина («гормона сна»), играющего ключевую роль в регулировании цикла сна. Если говорить упрощенно, то, когда уровень мелатонина в крови высок, человек засыпает, а при снижении содержания этого гормона до определенного уровня — просыпается.

Таким образом, синий свет является своеобразным природным будильником, возвращающим к бодрствованию многих животных, когда небо окрашивается в синий цвет после восхода солнца.

Как показали медицинские исследования, излучения даже одного ярко-синего светодиода оказывается достаточно для того, чтобы привести в действие этот природный механизм и снизить уровень мелатонина.

Читайте также  Фонарик своими руками на светодиоде

Иными словами, установка в спальне будильника или музыкального центра с синей подсветкой — далеко не самая удачная идея.

Многие физиологи считают, что негативное воздействие на наш сон может оказать «доза» синего света, полученная от мощной энергосберегающей лампы с «холодным» свечением, экрана телевизора или монитора ПК даже за пару часов до отправления ко сну.

Однако нарушения сна — это еще далеко на самое страшное последствие передозировки синего света. Некоторые исследователи полагают, что систематическое воздействие даже очень слабого источника синего света во время сна может привести к ослаблению иммунной системы и таким образом отрицательно повлиять на здоровье.

Ученые собрали уже большое количество данных, косвенно свидетельствующих о том, что в группах людей, подверженных хаотическому воздействию синего света, не связанного с естественными циклами чередования дня и ночи, количество больных, страдающих онкологическими заболеваниями, превышает среднестатистические показатели.

Впрочем, пока это лишь гипотеза.

«Синих» — с глаз долой!

Еще несколько лет тому назад производители оборудования начали получать от покупателей жалобы на дискомфорт, который вызывают ярко-синие светодиоды. Однако, по большому счету, воз и ныне там. Лишь единицы прислушались к гласу народа и изменили свой подход к дизайну.

Например, представители компании Logitech недавно сообщили, что в конструкцию ряда проектируемых продуктов были внесены соответствующие изменения.

К сожалению, в большинстве своем производители не видят (или не хотят видеть) в этом серьезной проблемы и продолжают регулярно выбрасывать на рынок устройства, усеянные ярко-синими светодиодами.

Что ж, пока мода одерживает верх над здравым смыслом, пользователям придется самостоятельно позаботиться о своем комфорте и здоровье. Мы же присоединяемся к группе противников ярко-синих светодиодов и приводим во врезке несколько советов для тех, кто хочет избавить себя и своих близких от навязчивой и потенциально небезопасной иллюминации. Доверяйте своим ощущениям и будьте бдительны: синие светодиоды действительно могут представлять угрозу для вашего здоровья.

КомпьютерПресс 11'2007

Источник: https://compress.ru/article.aspx?id=18304

Особая конструкция светодиода с изменением цветности как в галогенных лампах

Светодиоды с изменяемым цветом

Заказать этот номер

2013№6

По мнению автора, создать светодиод, который следует кривой излучения черного тела, — это не так уж и сложно: достаточно правильно регулировать твердотельное освещение (SSL), получая при этом низкую коррелированную цветовую температуру.

Люди любят то, к чему привыкли, а все непривычное отвергают. Когда галогенный светильник или лампа накаливания тускло светят, это значит, что через нить накала проходит меньший ток. Нить остывает и начинает испускать теплый свет с большим излучением в красной полосе спектра. Таким образом, мы предполагаем, что диммирование (затемнение) лампы приведет к более теплой, успокаивающей атмосфере.

Светодиодные источники освещения излучают свет благодаря другому физическому явлению — электролюминесценции, а не накаливанию. Нет никакого температурного сдвига, когда ток, протекающий через светодиодный кристалл, уменьшается для снижения силы света.

Необходимо конструировать светодиоды (LED) и твердотельные системы освещения (SSL) так, чтобы их диммирование происходило так же, как и их галогенных аналогов.

Направленные галогенные лампы очень популярны в индустрии гостиничного бизнеса и общественного питания. Однако в этом качестве использование зарекомендовавшего себя светодиодного освещения является более целесообразным.

В частности, LED-освещение гораздо эффективнее в плане преобразования электричества в свет, так как экономнее расходует энергию и не нагревается до высоких температур.

В любом случае, регулировка яркости светодиодов с таким же цветовым сдвигом, как и у галогенных источников, а также поддержка качества цвета являются самыми важными техническими задачами для разработчиков LED-излучателей и оборудования.

Цель исследований — найти светодиодный излучатель, который точно следует совершенной кривой излучения черного тела при диммировании. Или, что еще лучше, излучатель, который следует кривой еще более точно, чем его галогенный аналог. Чтобы понять, как можно достичь такого результата, важно учитывать особые требования к LED-кристаллу, подложке, оптической и управляющей системам, которые и позволяют создать и сделать коммерчески выгодным направленное светодиодное оборудование галогенного типа.

Почему галогенные лампы могут регулироваться таким образом?

Сначала давайте разберемся более подробно, как работали старые системы освещения. Все мы знаем, что если нагреть кусочек металла, он раскалится. Этот самый накал и есть тепловое излучение, вид электромагнитного излучения, вызываемый тепловым движением заряженных частиц металла. Цвет каления меняется от красного к оранжевому, затем к желтому, белому и, наконец, доходит до синего.

В то время как яркость свечения зависит от материала, спектральный состав зависит только от температуры. Под абсолютно черным телом понимается идеальное тело, которое поглощает все электромагнитное излучение, его достигающее, не передавая или отражая энергию.

Когда черное тело нагрето, частота или цветовая температура излучения могут быть отмечены на графике в соответствии с принятой формулой (формулой Планка) для абсолютно черного тела (рис. 1).

Рис. 1. Когда черное тело нагрето, цветовая температура излучения может быть отмечена на графике в соответствии с формулой Планка для абсолютно черного тела

Принцип работы галогенных ламп состоит в пропускании электрического тока через вольфрамовую нить, помещенную в стеклянную оболочку. Небольшие объемы йода или брома содержатся внутри оболочки, чтобы испаренный вольфрам отлагался обратно на нити накала, а не на стенки оболочки лампы.

Свет, излучаемый вольфрамовой нитью, следует совершенной кривой излучения черного тела довольно точно, однако иногда отклоняется от нее, выдавая зеленоватый оттенок на некоторых температурах.

Качество цвета, определенное как показатель цветопередачи (CRI), хорошо поддерживается в галогенных лампах, когда они горят в «полнакала».

Почему светодиодные лампы гаснут по-другому?

В LED-освещении свет создается не с помощью теплового излучения. Светодиоды создают свет при помощи электролюминесценции. Свет излучается, когда электроны и дырки рекомбинируют в материале — полупроводнике.

Спектр, или цвет излучаемого света определяется в основном компонентами полупроводника и люминофорами — химическими элементами, покрывающими кристалл светодиода.

В результате, когда меньший ток проходит сквозь светодиод и он горит менее ярко, сдвиг цветовой температуры оказывается очень мал, поскольку тепловое излучение представляет ничтожную часть излучаемого света. В действительности изменение оттенка во время потускнения светодиода едва ли заметно для человеческого глаза.

Мы привыкли к галогенному типу регулировки яркости и высокому показателю цветопередачи при диммировании галогенного освещения. Цветопередача лучше всего заметна на оттенках кожи. С насыщенным показателем CRI цвет кожи выглядит натурально, даже когда уровень освещенности уменьшается. Человеческий глаз гораздо более чувствителен к изменению цветов, нежели к небольшим изменениям яркости. В дневное время мы более всего чувствительны к синему цвету, именно поэтому у нас такое хорошее восприятие смены цвета.

Мы распознаем детали через зеленые и красные части спектра и ощущаем изменения освещенности в основном через зеленую часть. Между прочим, чистый белый — это, по определению, на 76% зеленый, на 22% красный и на 12% синий свет.

Мы привыкли к галогенному типу регулирования яркости, нам так привычно и комфортно, поэтому если свет приглушается, незаметно создавая теплый белый, — это кажется искусственным, и не стоит даже пытаться это делать в индустрии гостиничного бизнеса и общественного питания (рестораны, бары или отели).

Какие характеристики необходимы?

Если мы хотим изменить цвет светодиодного освещения на протяжении кривой излучения черного тела или другой кривой, когда светодиод гаснет, мы должны смешать свет как минимум из трех кристаллов, чтобы создать диапазон белых тонов или цветовых температур.

Чтобы создать белый LED-излучатель, нанесите на синий светодиод сочетание красного и желтого люминофоров. Обычно используются кристаллы с длиной волны в 445-455 нм, однако можно приспособить и кристаллы с большей длиной волны.

Комбинация из кристалла с определенной длиной волны и желтого/красного люминофоров — это тот самый способ, который позволяет достичь желаемых цветовых точек.

Люминофоры могут быть напылены на светодиодную пластину до того, как она будет разрезана на кристаллы, либо нанесены непосредственно на кристалл. Последний метод создает прямой тепловой мост для слоя люминофора, позволяя ему меньше нагреваться и показывать более высокие характеристики. В этом случае свет от кристалла можно подогнать в пределах трех эллипсов МакАдама.

Сочетая различные комбинации кристаллов и люминофоров, можно получить различные цветовые температуры в диапазоне 1800-5500 К, которые потом смешиваются в один световой пучок. Чтобы свет смешивался эффективно, светодиодный кристалл должен быть хорошо закреплен на подложке. Пропускание тока через светодиод приводит к нагреву, что влияет на стабильность во время эксплуатации, однако снижение тока приведет к уменьшению светосилы.

Этот побочный эффект может быть нивелирован двумя способами. Вместо того чтобы использовать клеящее вещество для присоединения кристалла к подложке, которое создает сильный тепловой барьер, ограничивая тем самым эффективное рассеяние тепла от LED-кристалла, лучше применять запатентованную технологию, в основе которой лежит золотой эвтектический сплав для крепления кристалла с гораздо лучшей теплопроводностью.

Если коэффициент теплопроводности (КТ) многослойной керамической подложки подобран близко к КТ используемого светодиодного кристалла, то это уменьшит нагрузку при его нагреве. Это сочетание технологий позволяет использовать кристалл на более высоких токах, чтобы вырабатывалось больше света, было занято меньше места и не достигались повреждающие p-n-переход температуры.

Если основная стеклянная линза расположена сверху на кристалле, то она не будет портиться со временем так, как портилась бы силиконовая линза, поэтому постоянство цвета обеспечивается на протяжении всего срока эксплуатации излучателя.

Смешивание цветов начинается близко к кристаллу и может быть проделано с помощью хорошо подобранной вторичной оптики, которая также позволяет точно сфокусировать луч света через конструкцию полного внутреннего отражения (рис. 2). Однородное качество света достигается по всей длине луча.

Рис. 2. Сочетание запатентованных технологий позволяет этим небольшим излучателям вырабатывать насыщенный, высококачественный свет, который может быть точно сфокусирован при помощи вторичных линз полного внутреннего отражения

Было доказано, что небольшой излучатель с подобранной вторичной оптикой может испускать в два раза больше светового потока, чем стандартное сочетание излучателя и отражателя (рис. 3). Более того, комбинация из компактного излучателя и линзы создает более мягкий «край» луча и уменьшает испускаемый свет за его пределы, тем самым сводя на нет нежелательный блеск. Это довольно важное требование для отраслей гостиничного бизнеса, общественного питания и других критичных к освещению областей.

Рис. 3. Распределение яркости к углу обзора, сравнение светодиодной конструкции полного внутреннего отражения (ПВО) и обычной отражающей технологии. Небольшие излучатели с линзами ПВО производят в два раза больше люменов при минимальном нежелательном блеске

Управление драйвером

Технологии излучателя и излучателя/линзы, описанные ранее, могут лечь в основу настраиваемой белой светодиодной платформы. Например, LuxiTune, разработанный LED Engin, доступен как излучатель со вторичной оптикой ПВО и встроенным драйвером (рис. 4). Данный модуль позволяет ускорить создание новых продуктов на рынке осветительного оборудования. В этом случае одиночный излучатель состоит из 12 кристаллов, связанных через три канала, т. е.

три группы по четыре кристалла. Конструкция подложки позволяет работать независимо с каждым кристаллом. Вторичная оптика создает луч с углом в 24, 32 или 45° с минимальной потерей света и без бликов. Печатная монтажная плата, на которой и расположен излучатель, дополняет модуль управляющей электроники, которая определяет, какой канал отводится для группы связанных кристаллов.

При помощи триангулирования света от каждой из групп температура цвета варьируется от 3000 К при максимальной светосиле до 1800 К при полном погасании (сила света менее 2%, рис. 5). Плата управления позволяет использовать цепь сопряжения в стандартизированных, широко доступных и недорогих диммерах (0-10 В) или кнопочном управлении. DMX (Digital Multiplex) интерфейс не является обязательным. Эта платформа работает от одиночной, нерегулируемой шины питания на 24 В.

Источники питания переменного и постоянного тока, подающие данное напряжение, есть в наличии по доступным ценам.

Рис. 4. Небольшой излучатель, вторичная оптика и панель управления драйвером позволяют использовать затемненное освещение галогенного типа со всеми преимуществами LED-освещения

Читайте также  Светодиоды тускло горят после выключения

Рис. 5. Коррелированная цветовая температура LuxiTune близко следует кривой излучения черного тела

Управление происходит при помощи запатентованных алгоритмов, работающих на микроконтроллере. Программное обеспечение гарантирует ровную цветовую температуру и плотность потока по всему диапазону рабочих температур, при этом не требуется никакой перекалибровки.

Процессы и технологии, описанные ранее, позволяют гарантировать, что ровность цветовой температуры достигает трех квадратичных отклонений при сравнении цветов или эллипсов МакАдама, гарантируя, таким образом, идентичные результаты для светового оборудования во время установки.

На температуре в 3000 К показатель цветопередачи (CRI) 90 и коэффициент цветопередачи красного цвета (R9), равный 80, вполне достижимы, а на всем затемненном диапазоне средний показатель цветопередачи равняется 85, а R9 — 70. Типичный световой поток достигает 1100 лм при постоянной температуре линз полного внутреннего отражения. Энергопотребление составляет 17,3 Вт при светоотдаче в 63 лм/Вт.

При максимальной светосиле такие излучатели обычно соответствуют галогенной лампе на 70 Вт, однако сохраняют до 70% энергии. В дальнейшем бонусом также будет и отсутствие сильного нагрева со стороны лампы, что позволит избежать угроз безопасности, к которым может привести высокая температура.

Запатентованные технологии по отбору и покрытию светодиодных кристаллов, присоединению кристалла к подложке, конструкции подложки, конструкции первичной и вторичной оптики и разработке управляющей электроники теперь соединены в одно целое для создания легко внедряемых решений, позволяющих получать затемненное освещение галогенного типа от небольших, эффективных и экономичных светодиодов.

Оригинал статьи опубликован на http://ledsmagazine.com/features/10/10/14.

Другие статьи по данной теме:

Сообщить об ошибке

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

Источник: https://led-e.ru/preview/pre_24_6_13_led_espl.php

Светодиодные лампы приходят в наш дом: умные лампы подстраивают яркость и изменять цвет

Светодиоды с изменяемым цветом

Со светодиодной лампочкой ZigBee можно связаться по Wi-Fi или Bluetooth. С ее помощью вы создадите у себя дома “интеллектуальное” освещение. В перечне ее возможностей от изменения яркости по расписанию до включения света при определенных условиях. С течением времени это приятно отразится на счетах за электричество.

Некоторые из представленных ниже LED-ламп могут освещать комнату любым из цветов радуги, подстраиваясь под ваше настроение и иные обстоятельства. Если вы решили установить в своем доме умные светодиодные лампы, то познакомьтесь с теми моделями, которые можно купить сегодня или в ближайшем будущем.

Набор Belkin WeMo LED Lighting Starter

Набор Belkin WeMo LED Lighting Starter скоро появиться в продаже по цене 130 долларов. Он включает в себя две LED-лампы и один Wi-Fi хаб WeMo. Каждая дополнительная лампочка обойдется в 40 долларов. Само приложение WeMo позволяет задавать режим работы до 50 источников освещения.

Поддерживается только белое свечение. Лампы можно включать и выключать, регулировать яркость, удаленно задавать режим работы. К сети Wi-Fi ламопчки подключаются через хаб WeMo.

Эти светодиодные источники освещения можно интегрировать в собственный аккаунт IFTTT для полной автоматизации их работы.

iLumi Color Tunable LED Smartbulbs

Стартап iLumi сегодня продает два типа светодиодных ламп с изменяемым цветом свечения. Та что поменьше — A21 — стоит 90 долларов, а большая — PAR30 — 100 долларов. В отличие от изделия Belkin, лампы iLumi управляются по Bluetooth 4.0.

Это означает, что можно обойтись без специального хаба, так как к лампам можно подключиться непосредственно с телефона. Но управлять ими можно только с расстояния до 30 метров. Удаленно включать и выключать освещение не получится. iLumi могут светится белым светом или приобретать заданный оттенок.

В них имеется функция регулировки яркости и работы по расписанию.

Insteon LED Bulb

Цена на светодиодную лампу Insteon составляет 30 долларов. Это заметно ниже по сравнению со многими другими вариантами умных источников освещения.

Также она позволяют экономить деньги и при эксплуатации — потребляет всего 8 Ватт, а ожидаемое время работы составляет 52 тысячи часов. Но по яркости Insteon LED далеко не лидер.

При заявленных 591 люменах, разработчиком утверждается, что это равносильно 60-ваттной лампе накаливания. Другие бренды считают, что для достижения аналогичного эффекта лампа должна “светиться” на 800 люмен.

Lifx Multicolor Smart LED

Lifx — это один из успешных проектов Kickstarter. Он предлагает нам одну из самых мощных светодиодных ламп. При потребляемой мощности 17 ватт она дает освещение в 1000 люмен (эквивалент 75 Ватт при использовании лампы накаливания).

Но эта конструкция заметно больше и тяжелее, чем остальные. Отчасти это объясняется встроенным в лампу Lifx Wi-Fi. При цене отдельной лампы в 99 долларов, вам не придется дополнительно устанавливать хаб. Просто ввинтите ее в патрон, скачайте приложения для управления и настраивайте свою умную LED-лампу. Впрочем, само приложение обладает довольно ограниченными функциональными возможностями. Здесь нельзя задать расписание или получать уведомления. Также отсутствует совместимость с IFTTT.

Стартовый набор Philips Hue Connected Bulb

Набор Philips Hue Connected Bulb стоит 200 долларов. В него входит три светодиодные лампы с поддержкой ZigBee и хаб. Без хаба управлять лампами Philips Hue нет никакой возможности. А купить его отдельно или с меньшим количеством ламп нельзя. Поэтому сразу придется раскошелиться на эту сумму. Но оно того стоит. Приложение для управления лампами интуитивно понятно. Цвет свечения можно изменять во всем диапазоне RGB. Кроме богатых функциональных возможностей приложения, лампами Philips Hue можно управлять через IFTTT.

Philips Hue Lux LED

Светодиодные лампы Philips Hue Lux светятся только белым. В 100-долларовый набор входит хаб и две лампы. Каждую дополнительную лампу можно купить за 40 долларов. Ожидается, что данный набор появится в продаже во второй половине 2014 года. Функционально он будет аналогичен Philips Hue, за исключением изменения цвета. Если вы не хотите играть с оттенками источника света, то имеет смысл приобрести более дешевый набор Hue Lux.

Samsung Smart LED с поддержкой Bluetooth

Как и iLumi, недавно анонсированные светодиодные лампы от Samsung будет управляться через Bluetooth 4.0. О цене на это изделие пока ничего неизвестно. Судя по всему, у нас будет возможность управлять температурой свечения этих ламп, изменяя ее от теплой оранжево-белой до холодной голубой. То есть, с помощью соответствующего приложения мы сможем имитировать работу различных типов ламп.

Цветная светодиодная лампа Tabu Lumen LED Color Smart Bulb

Tabu Lumen LED Color Smart Bulb не может похвастаться интеграцией с IFTTT или возможностью изменения цвета, как у Philips Hue, но ее отличает срок службы в 30 тысяч часов. Это вдвое больше, чем заявлено в отношении Philips Hue.

Белый свет яркостью 400 люмен (аналог 40-ваттной лампы накаливания). Это не так ярко, как 600 люмен, излучаемых Hue. А цена на эти лампы достигает 70 долларов, что дороже Philips Hue. Но хаб для запуска светодиодной лампы Tabu Lumen LED Color Smart Bulb не нужен.

Она управляется посредством Bluetooth 4.0.

Tabu LuMini LED

Tabu LuMini — двоюродный брат Tabu Lumen. Эта светодиодная лампа также управляется по Bluetooth. Стоит она 35 долларов. Но может быть только цветной. Обычную лампу накаливания LuMini не заменит, но это сложно назвать серьезным недостатком. Для управления цветом необходимо установить приложение Lumen, имеющего удобный цветной круг.

Набор TCP Wireless LED Lighting

Это один из самых доступных наборов. Стоит он чуть больше 100 долларов. В набор входит три светодиодных лампы и хаб. А лампочка в отдельности имеет и вовсе демократичную цену — 17 долларов (800 люмен — аналог 60 Ватт у ламп накаливания).

Довольно высокой яркостью список приятных моментов, пожалуй, и ограничивается. Эта LED-лампа может светиться только белым, не подозревает о существовании IFTTT или других способах автоматического управления.

Но, с учетом цены, это весьма неплохой вариант для ознакомления с новой технологией.

Источник: http://futra.ru/svetodiodnyie-lampyi-prihodyat-v-nash-dom-umnyie-lampyi-podstraivayut-yarkost-i-izmenyat-tsvet.html

Как выбрать цветовую температуру?

Светодиоды с изменяемым цветом

Цветовая температура является одной из основных характеристик светодиодных изделий, использующихся для освещения. Часто возникает вопрос, что же это такое и как выбрать подходящую цветовую температуру? Попробуем разобраться с этими вопросами.

По определению, цветовая температура — это температура абсолютно чёрного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение, измеряется в градусах Кельвина.

Другими словами, цветовая температура определяет «оттенок» света, излучаемого источником (лампой или светильником), от теплого, близкого к лампе накаливания, отдающего «желтизной» до холодного белого света (люминесцентные лампы холодного света), отдающего в синюю область спектра.

Шкала цветовых температур распространенных источников света:

800 К — начало видимого темно-красного свечения раскалённых тел;
1500-2000 К — свет пламени свечи;
2000 К — Натриевая лампа высокого давления;
2200 К — лампа накаливания 40 Вт;
2680 К — лампа накаливания 60 Вт;
2800 К — лампа накаливания 100 Вт (вакуумная лампа);
2800-2854 К — газонаполненные лампы накаливания с вольфрамовой спиралью;
3000 К — лампа накаливания 200 Вт, галогенная лампа;
3200—3250 К — типичные киносъёмочные лампы;
3400 К — солнце у горизонта;
3800 К — лампы, использующиеся для подсветки мясных продуктов в магазине (имеют повышенное содержание красного цвета в спектре);
4200 К — лампа дневного света (тёплый белый свет);
4300-4500 К — утреннее солнце и солнце в обеденное время;
4500-5000 К — ксеноновая дуговая лампа, электрическая дуга;
5000 К — солнце в полдень;
5500 К — облака в полдень;
5500-5600 К — фотовспышка;
5600-7000 К — лампа дневного света;
6200 К — близкий к дневному свет;
6500 К — стандартный источник дневного белого света, близкий к полуденному солнечному свету;
6500-7500 К — облачность;
7500 К — дневной свет, с большой долей рассеянного от чистого голубого неба;
7500-8500 К — сумерки;
9500 К — синее безоблачное небо на северной стороне перед восходом Солнца;
10000 К — источник света с «бесконечной температурой», используемый в риф-аквариумах (актиниевый оттенок голубого цвета);
15000 К — ясное голубое небо в зимнюю пору;
20000 К — синее небо в полярных широтах.

Градации цветовой температуры.

Примерное разделение градаций цветовой температуры:

  • Теплый белый (2700-3200К)
  • Дневной белый (3500-4500К)
  • Белый (5000-6000К)
  • Холодный белый (6000-8000К).

Лучше выбирать именно нужное значение цветовой температуры в Кельвинах, т.к. у разных производителей понятия «теплый», «нейтральный», «холодный» могут различаться.

В таблице 1 диапазоны значений цветовых температур наиболее распространенных искусственных источников света. Причем, точное значение цветовой температуры у истоников света всегда указан на упаковке или в сопроводительной документации на товар(паспорт на изделие, техническое описание).

Таблица 1. Цветовые температуры наиболее распространенных источников света

КЛЛ (компактные люминесцентные лампы) 2700-6500 К
ДНаТ (натриевая лампа высокого давления) не более 2200 К
ДРЛ (дуговые ртутные лампы) 3800 К
ЛН и ГЛН при 100% мощности (лампы накаливания и галогенные лампы) 2700-3500 К
МГЛ (металлгалогенные лампы) 3500-7000 К
ЛЛ (люминесцентные лампы) 2700-6500 К
LED(светоизлучающие диоды) 2200-15000 К

Кривая излучения абсолютно черного тела в цветовом пространстве МКО 1931.

Кроме того, источники с одинаковой цветовой температурой могут различаться по цветовому тону света: из представленной выше диаграммы следует, что все источники света, измеренные значения цветности которых лежат на одной линии, проведенной перпендикулярно кривой излучения абсолютно черного тела, имеют одинаковую цветовую температуру. По этой и по другим причинам производители светодиодов используют метод управления цветовыми вариациями (и другими характеристиками), известный как сортировка по бинам.

Читайте также  Реле поворотов под светодиоды своими руками

Сортировка светодиодов по бинам*

При изготовлении светодиодов, также как и любых других изделий, их параметры имеют определенные отклонения от номинальных значений, это относится и к цветовой температуре. Допустимые отклонения регламентируются стандартами, например, стандарт цветности C78.

377A, разработанный Американским национальным институтом стандартов (ANSI) (таблица 2), определяет 8 номинальных значений цветовой температуры. Светодиоды, цвет которых соответствует указанному номинальному значению Тцв и цветовому диапазону, соответствуют стандарту.

Таблица 2. Стандарт ANSI C78.377A для Тцв

Номинальная Тцв, К Диапазон Тцв, К
2700 2725±145
3000 3045±175
3500 3465±245
4000 3985±275
4500 4503±243
5000 5028±283
5700 5665±355
6500 6530±510

Разница в цвете для светодиодов, соответствующих стандарту хорошо заметна, поэтому на практике производители разбивают каждый диапазон на несколько бинов (подклассов).

Одной из основных задач производителей светотехники является такое деление светодиодов на бины, которое сводит к минимуму различие цветов между отдельными осветительными приборами или между партиями такой продукции.

Чтобы понять, как определяется бин, снова обратимся к диаграмме цветового пространства МКО 1931 и увеличим масштаб для кривой излучения черного тела.

Изменения цветовой температуры располагаются на кривой излучения абсолютно черного тела, но изменения цвета светодиода располагаются также выше и ниже кривой излучения черного тела.

Светодиоды, у которых цветовые координаты лежат выше кривой излучения абсолютно черного тела, имеют зеленоватый оттенок, а те, у которых ниже, — розоватый. На практике это означает, что указание цветовой температуры не обеспечивает одинаковый цвет.

Диапазоны цветовых температур по стандарту ANSI C78.377A.

Например, две представленные ниже диаграммы иллюстрируют два гипотетических бина светодиодов, цветовая температура каждого из которых равна 5300 K, с отклонением +/- 300 K. Бин 1 имеет некоторое отклонение цвета, так как его область лежит выше и ниже кривой излучения абсолютно черного тела. Отклонение в цвете у бина 2 в четыре раза больше, хотя он также соответствует указанной производителем цветовой температуре.

Пример бинов светодиодов.

Каждый производитель предлагает свое разбиение на бины, например, компания OSRAM предлагает несколько бинов светодиодов с одной цветовой температурой. Каждый бин находится в пределах области, соответствующей стандарту ANSI для этой цветности.

На диаграмме ниже приведен пример разбиения на бины для светодиодов OSRAM Golden DRAGON с цветовой температурой 2700 K. Хотя все 16 бинов, предлагаемых компанией OSRAM, соответствуют стандарту ANSI C78.377A для номинальной Тцв 2700 K, они отличаются по Тцв и цветовому тону.

Поэтому необходимо учитывать бин светодиодов при установке светильников из разных партий одного производителя, либо разных производителей.

Пример разбиения диапазона на бины.

Светодиодная лента также составляется из светодиодов одного бина, каждая лента марки ARlight, представленная в нашем интернет-магазине проходит контроль по показателям оттенка, что отмечается кодом BIN на упаковке.

Маркировка BIN на упаковке ленты ARlight

Светодиодные ленты ARlight цветовой температуры 4000К Дневной белый разных BIN (сверху 39G, снизу 46).

На изображении выше видно, как отличаются по цветовому тону ленты с разными бинами. В реальности разница заметна только если положить две ленты рядом, на фото насыщенность и сочность цветов специально увеличена. Два не находящихся рядом источника света человеческий глаз способен заметить по цветности при разнице температур 400-600К, лучше чувствуется разница в теплых оттенках, меньше в холодных.

Прежде чем устанавливать светодиодные ленты, лампы, линейки и другие светотехнические изделия на основе светодиодов, проверьте их БИН (оттенок, работоспособность). БИНы должны совпадать на всех рядом установленных светодиодных лентах. Необходимо применять данное правило ко всем цветовым температурам белого света, а также и к RGB или RGB-W светодиодным лентам . Две рядом установленные ленты RGB с разными бинами(BIN) будут отличаться оттенком друг от друга!

* Данный раздел содержит материалы, предоставляемые компанией Philips Color Kinetics.

Цветовая температура и восприятие человека

От выбора правильной цветовой температуры источников зависит, как будет эмоционально влиять на человека окружающее пространство, восприниматься внешний вид объектов и их цвета. Большое значение имеет то, что разные источники света ассоциируются с определенной обстановкой. Например, теплый свет свечи оказывает расслабляющее действие, белое освещение ламп дневного света создает рабочую атмосферу, холодное освещение создает больший контраст, применяется при необходимости работ с высоким цветоразличением.

Существует нормативный документ, в котором содержатся рекомендации по подбору цветовой температуры в помещении различного назначения: СНиП 23-05-95 «Естественное и искусственное освещение». В нем, в частности, для жилых помещений рекомендуется теплый свет, в помещениях, где выполняется зрительная работа — дневной 3000-4000К, в помещениях с высокими требованиями к цветоразличению более холодный свет до 5000-6000К.

Также там упоминается, что при большом количестве в освещаемом пространстве зеленых и синих объектов следует применять источники с цветовой температурой более 4000К, с большим количеством красных и желтых цветов — не более 3500К.

Конечно, когда создавался данный нормативный документ применение светодиодных источников света было весьма ограничено, тем не менее, содержащаяся там информация может быть полезна и при их выборе. Например, осветительные диоды холодного света содержат большую долю синей части спектра, т.е.

подчеркивают синие цвета, а в светодиодах теплого белого света синяя составляющая подавляется большим количеством желтого люминофора. Кроме этого, нужно учитывать индекс цветопередачи светодиодных источников, т.к. он не всегда на высоте в отличие от галогенных ламп, например, а только у отдельных более дорогих моделей.

В материалах, предоставляемых компанией Philips Color Kinetics приводится следующая таблица (таблица 3) для выбора цветовой температуры в зависимости от желаемой атмосферы и области применения:

Таблица 3. Эффект, атмосфера и область применения в зависимости от цветовой температуры

Цветовая температура Теплый свет 2700 К Белый свет 3000 К Нейтральный 3500 К Холодный свет 4100 К Дневной свет 5000-6500 К
Эффекты и атмосфера Теплая УютнаяОткрытая Дружеская ИнтимнаяИндивидуальная Дружеская РасполагающаяБезопасная Ясная ЧистаяПродуктивная Яркая ТревожнаяПодчеркивающая цвета
Области применения Рестораны Вестибюли гостиниц БутикиЖилы помещения Библиотеки Офисные помещенияМагазины Выставочные залы Книжные магазиныОфисные помещения Офисные помещения Классные комнаты СупермаркетыБольницы Галереи Музеи Ювелирные магазиныПомещения для медицинских осмотров

Восприятие человеком цветовой температуры в зависимости от освещенности

Исследования зависимости между освещенностью и цветовой температурой проводились Круитхофом (Kruithof). Эмпирическим путем им был составлен график — кривая комфорта Круитхофа — на котором определены области высоких и низких уровней освещенности для различных цветовых температур, являющиеся наиболее комфортными для наблюдателей. Цветовая температура, находящаяся в диапазоне комфорта, воспринимается как «белый» свет.

Именно по этой причине свет неба воспринимается человеком как комфортный белый свет, хотя источник с такой же цветовой температурой в помещении будет явно отдавать синевой: освещенность неба очень высока по сравнению с любым искусственным источником.

Кривая комфорта (номограмма) Круитхофа.

Если Вам понадобиться помощь или консультация в выборе светодиодных источников света, Вы можете обратиться к нашим специалистам по телефону горячей линии 8 (800) 700-80-91. Звонок бесплатный по всей территории Российской Федерации.

Или позвоните нам в один клик прямо с сайта (кнопка расположена справа вверху).

Также ждем Ваших писем на электронную почту: post@novolampa.ru или сообщений в online-консультанте на нашем сайте.

Источник: https://novolampa.ru/baza-znaniy/kak-vybrat-tsvetovuyu-temperaturu/

За счет чего светодиоды меняют цвет?

Светодиоды с изменяемым цветом

Почему светодиоды, при изменении напряжения, меняют цвет?

Чтобы разобраться, за счет чего, в результате каких факторов внешнего и внутреннего воздействия, светодиоды меняют цвет, необходимо разобраться с общим устройством этого полупроводникового прибора.

Оказывается, что изменение цветового спектра при свечении светодиода, независимо от типа и конструкции, происходит в результате изменения параметров напряжения.

Оказывается, что под таким воздействием даже самый обыкновенный светодиод (например, оранжевый) изменит цвет по мере увеличения напряжения в сети. Сначала это будет желтый, затем светло-зеленый тон, а далее диод попросту перегорит.

Общий принцип явления

Внутреннее устройство любого полупроводникового диода (и светодиода, в том числе) – это два полупроводника, которые имеют разный уровень проводимости. В первом, электрический ток проходит за счет известного физического явления, обеспечивающего перемещение так называемых «свободных» электронов, а во втором – благодаря перемещению «дырок». Это места, где отсутствуют сами электроны.

На участке цепи, где обеспечено последовательное или параллельное соединение полупроводников, постоянно протекает процесс, называющийся рекомбинация. Электрон занимает положение «дырки», в результате, атом становится нейтральным. И вот в этот самый момент фиксируется излучение фотонов.

Эта излучаемая энергия, это не что иное, как цвет. Он может изменяться с учетом влияния следующих основных факторов:

  1. Тип полупроводника, из которого светодиоды сделаны.
  2. Какой вид примесей используется в месте контакта полупроводников.
  3. Размер запретной зоны по ширине, место, где протекает процесс рекомбинации.
  4. Параметры, величины, влияющие на проявление силы тока на данном участке электрической цепи.

Проще всего воздействовать на светодиод, добиваясь изменения цвета, регулируя величину электрического тока. Добиваются этого путем перемены параметров напряжения. В соответствии с законом Ома увеличение напряжения в цепи приводит к пропорциональному увеличению силы тока. Соответственно, в этот момент энергия фотона будет увеличиваться. Результатом будет перемещение цвета по направлению к холодной, синей части спектра.

Основные принципы формирования цвета с использованием светодиодов

Полезно будет вспомнить, что любой цвет и оттенок, формируется за счет трех основных цветов:

Комбинируя параметры этих трех цветов можно легко получать практически любые оттенки. Главное – правильно подбирать пропорции.

Исходя из этого параметра, чтобы любой световой прибор имел возможность менять цвета и оттенки, он должен иметь не менее трех источников света. Фактически, так оно и есть. Любой RGB-светодиод, это не что иное, как три излучающих кристалла, заключенных в едином корпусе.

Управление и контроль работы такого светодиода осуществляется за счет использования контроллера. Каждый светодиод, меняющий цвет, оснащен таким контроллером. Это устройство управляет каждым отдельным цветом.

Характерные особенности световых эффектов

Выясняя, как за счет рекомбинации дырок и электронов появляется неодинаковое излучение света, в результате чего светодиоды меняют цвет. Это излучение специалисты характеризуют параметрами квантового выхода. Эта величина получается в результате формирования определенного количества выделенных световых фантов.

  • Внутренний. Находится внутри полупроводникового перехода.
  • Внешний. Его место – непосредственно конструкция самого светодиода.

В первом случае теоретически можно обеспечить квантовый выход в параметрах, близких к 100% показателям. Но при одном условии – потребуется создавать экстремально высокие (для данного диода) токи и обеспечить эффективный отвод тепла.

Второй уровень предусматривает рассеивание части света внутри самого источника. Это свечение в основном поглощается элементами конструкции осветительного устройства, в результате снижается общая эффективность излучения.

RGBW светодиоды

Мы уже отмечали, что для формирования идеально белого цвета, необходимо обеспечить эффективную работу каждого RGB-светодиода, для чего максимально точно отбалансировать яркость свечения по каждому отдельному кристаллу.

На практике это сделать достаточно сложно, поэтому, чтобы решить задачу кратчайшим путем, следует дополнить устройство диода кристаллом четвертого свечения.

То есть, к красному, синему и зеленому кристаллам, являющимися обязательными компонентами современного диода, добавляется еще один кристалл – белый.

Подведем итог

Очевидно, что в конструкции современного светодиода имеются элементы, позволяющие при определенных условиях менять цвет. Основная причина этого – поведение контроллера, который под воздействием меняющегося напряжения передает соответствующие команды на RGB-светодиод.

Источник: http://podvi.ru/svetotexnika/za-schet-chego-svetodiody-menyayut-cvet.html