Соединение двух звуковых трансформаторов

Содержание

Звуковой трансформатор: устройство, особенности, тестирование, схемы

Соединение двух звуковых трансформаторов

Звуковой тип трансформатора — довольно нестандартное устройство, требующее тщательного подхода к разработке схематического решения. Такие виды оборудования отличаются от силовых по некоторым параметрам, для правильного проектирования и соблюдения ТБ важно понимать их устройство. Кроме того, принцип работы и характеристики значительно меняются в зависимости от того, к выходному или межкаскадному виду относится аудиотрансформатор.

Ламповые усилители: теоретические основы

Ламповые усилители представляют собой устройства, предназначенные для усиления звукового сигнала. Делается это за счет компонента — специальных ламп. При этом лампы могут быть радио или электровакуумные — от этого зависят технические особенности устройства. Своеобразный генератор может функционировать на трех типах каскадов:

  • предупредительный;
  • драйверный;
  • выходной.

Предупредительный и драйверный часто совмещаются между собой, тем самым увеличивая сферу применения устройства и улучшая его эффективность. Основное преимущество ламповых усилителей в том, что они очень простые по своим конструктивным особенностям. Собрать их даже новичку, который имеет приблизительные знания в области радиоэлектроники, не составит труда.

Трансформатор такого типа изготовляется в домашних условиях, если есть в наличии детали, на это не потребуется много времени.

Если говорить о теоретических основах, то обязательно нужно определиться, какой из видов усилителя нужен для той или иной ситуации. Представлены однотактные и двухтактные модели (каждый из них можно сделать самостоятельно).

Однотактный подразумевает, что используется только единичный канал усиления звука. Однотактные отличаются поставкой более чистого и простого звучания, если появляется вторая гармоника, то звук получается более мягкий. Именно от того, что в результате вмешательства второй гармоники звук получается тянувшим, нежным и мягким и появилось известное в музыкальных компаниях выражение лампового звука

Двухтактный усилитель функционирует на классах усиления А1, А2, АВ1, АВ2, В1, В2. Для большинства случаев подойдут вариации А1 и АВ1. Такие модели новичкам собрать не под силу, поэтому для их покупки обращаются в магазины.



Виды

Трансформатор звукового типа работает от сопротивления источника на сопротивление нагрузки. Это неоспоримая аксиома, вне зависимости от того, в какому типу относится тс — меж каскадному или выходному.

Устройство передачи звука подключается к первичной обмотке оборудования. У него есть сопротивление, вторичка подключена к нему. Принцип работы далее определяется типом трансформатора.

Межкаскадные

Эти устройства практически не выпускаются современными производителями. Дело в том, что принцип их работы основывается на передаче импульса между двумя сопротивлениями или импедансами. Это не удобно и приводит к потере коэффициента полезного действия.

Выходные

Выходного типа тс функционируют не от импедансов обоих, а от конкретного сопротивления источника. В зависимости от вариации оборудования это может быть тетрод или пентод, которые подключены к активному сопротивлению.

Ключевые отличия от силового

Трансформатор звуковой частоты отличается от привычного силового в первую очередь тем, что в нем присутствует устройство для пропуска диапазона звуковых частот. Широкополосные довольно трудны в просчетах, особенно если речь идет о полных сопротивлениях и при работе на большой мощности. Всегда присутствует постоянной ток на одной из обмоток. Проблемы со схематической частью вызваны трудностями в расчете из-за числа октав, с которыми работает устройство, а не диапазона.

Импульсный трансформатор для питания усилителя звуковых частот занимает меньше места, если сравнивать его с аналогом силовым с идентичными техническими показателями. К усилителю обязательно идет генератор, а к силовому трансформатору — только первичная обмотка к электрической сети, вторичная обмотка к диодам и различные конденсаторы.

Особенности проектирования трансформаторов звуковой частоты для ламповой радиотехники

Востребованность тс звуковой частоты обусловлена тем, что тут нет переходных конденсаторов. Устройства отличаются стабильной работой несмотря на возможные перебои с питанием и подачей напряжения, полоса расширена в сторону низких частот. Последний фактор обуславливает комфорт для человеческого уха, которое при средней громкости более чувствительно к низким и средним частотам.

особенность проектирования состоит в том, что необходимо уменьшить будет усиление на самых низких частотах. Этого не достичь другим способами кроме как снизить индуктивное сопротивление первички.

Зная схематическое решение новичку желательно собрать устройство на монтажной плите. Колпачками закрываются лампы. Проверка работы вторичной обмотки проходит после сборки аппаратуры. Если возникает резкий свист или жужжание, то меняются местами выводы. Дроссели наматываются в соответствии со схемой. В большей части оборудования подойдет расчет только с зазоров. При этом размер зазора делается в строгом соответствии с необходимым, в противном случае параметры сильно отличаться, что не является верным.



Возможные схематические решения

Основной технический параметр трансформатора аудио типа — это импеданс. Данные модели тс оптимально походят для балансировки нагрузок и усилителей, которые несмотря на разные входные и выходные показатели сопротивления передают точно мощность.

Источник: https://OTransformatore.ru/vopros-otvet/zvukovoj-transformator/

ТРАНСФОРМАТОРЫ

Соединение двух звуковых трансформаторов

   В этой статье мы поговорим о трансформаторах, устройствах способных повышать или понижать напряжение при переменном токе. Существуют различные по конструкции и предназначению трансформаторы. Например есть как однофазные, так и трехфазные. На фото изображен однофазный трансформатор:

Читайте также  Соединение выключателя с подсветкой

Трансформатор однофазный

   Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:

Принципиальная схема трансформатора

   Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки.

Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны.

Также трансформаторы могут использоваться для гальванической развязки цепей.

Принцип работы трансформатора

Принцип действия трансформатора

   При подаче напряжения на первичную обмотку в ней наводится ЭДС самоиндукции. Силовые линии магнитного поля пронизывают не только ту катушку, которая наводит ток, но и расположенную на том же сердечнике вторую катушку (вторичную обмотку) и наводит также в ней ЭДС самоиндукции.

Отношение числа витков первичной обмотки к вторичной называется Коэффициентом трансформации. Записывается это так:

  • U1 =напряжение первичной обмотки.
  • U2 = напряжение вторичной обмотки.
  • w1 = количество витков первичной обмотки.
  • w2 = количество витков вторичной обмотки.
  • кт = коэффициент трансформации.

Коэффициент трансформации — формула

   Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15.

Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1\кт = 220\15 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.

66 вольт.

Трансформаторы на схемах

   Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

   На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

   Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Сварочные трансформаторы

   Существуют специальные сварочные трансформаторы. 

Сварочный трансформатор

   Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.  

Силовые трансформаторы

   Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше.

Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность.

В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:

Фото высоковольтный трансформатор

   Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание. 

Трансформатор 6 киловольт

   У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

   Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

   На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока

   Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор — изображение на схеме

   Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

Фото ЛАТР

   В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

   Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

   Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото: 

Фотография — тороидальный трансформатор

   Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

   Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов — рисунок

   Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

   Форум по трансформаторам

   Обсудить статью ТРАНСФОРМАТОРЫ

Читайте также  Виды соединения оптического кабеля

Источник: https://radioskot.ru/publ/nachinajushhim/transformatory/5-1-0-761

Выходной трансформатор — почти просто, но не дешево

Соединение двух звуковых трансформаторов

Вокруг выходных трансформаторов для ламповых усилителей в последние годы создан некий ореол мистики и таинственности, знания, доступного лишь избранным. Отчасти так и есть, однако… Методики инженерного расчета трансформаторов были разработаны более полувека назад и за эти годы претерпели несущественные изменения лишь в части использования новых магнитных материалов более высокого качества [1]. Основные же принципы и расчетные соотношения остались прежними. Законы физики не изменяются за полста лет…

Расчёт параметров выходного трансформатора

Исходные данные для расчета трансформатора определяются в процессе расчета оконечного каскада усилителя. Ими являются — выходная мощность, приведенное сопротивление нагрузки в цепи анода, индуктивность первичной обмотки и индуктивность рассеяния трансформатора [2].

Определение необходимых размеров магнитопровода

Первоначально надо определить требуемый габарит магнитопровода. Пригодность имеющегося железа можно ориентировочно оценить по условию:

где Vc — активный объем стали;

L1 — расчетная индуктивность первичной обмотки, Гн;

UA — амплитуда напряжения на зажимах первичной обмотки, В;

FH — нижняя граничная частота, Гц;

Bmax — максимальная амплитуда магнитной индукции, Гс.

S — площадь сечения магнитопровода, см2;

lC — средняя длина магнитной силовой линии, см.

Для броневого магнитопровода средняя длина магнитной силовой линии рассчитывается, как:

А для стержневого:

где обозначения соответствуют принятым на Рис. 1.

Рис. 1 Основные размеры магнитопроводов

При оценке габаритов магнитопровода величину Вmax следует ориентировочно принять равной 7000 — 8000 Гс для пластинчатых и 10000 Гc для витых разрезных наборов железа.

Экспериментальное определени индукции трансформатора

Для дальнейших расчетов максимальное значение индукции Вmax желательно определить экспериментально на выбранном железе. С этой целью на каркас трансформатора наматывается пробная обмотка в 100 витков и включается в схему по Рис. 2. Магнитопровод при этом должен быть собран без зазора. Плавно увеличивая напряжение на обмотке с помощью ЛАТРа, наблюдают форму тока через нее. В момент появления заметных на глаз искажений формы синусоиды фиксируют напряжение на обмотке (показания прибора V1).

Рис. 2 Схема для измерения максимальной индукции в магнитопроводе

Затем допустимое значение индукции рассчитывают по формуле:

где U1 — показания прибора, В;

S — площадь сечения магнитопровода, см2 (чистого железа).

Определение коэффициента трансформации

Расчет конструктивных данных начинают с определения коэффициента трансформации, который, при заданной величине сопротивления нагрузки усилителя, обеспечит расчетную величину анодной нагрузки выходной лампы.

где n — коэффициент трансформации;

N1 — число витков первичной обмотки;

N2 — число витков вторичной обмотки;

RA — расчетная величина сопротивления анодной нагрузки лампы, Ом;

RH — сопротивление нагрузки усилителя, Ом;

К — КПД трансформатора.

Величина КПД однотактных трансформаторов на мощности 5 — 30 Вт обычно лежит в пределах 0,8 — 0,9. За значение сопротивления нагрузки усилителя желательно принять величину, равную:

где Rном — номинальное сопротивление акустической системы;

Rmin — минимальное сопротивление акустической системы в рабочем диапазоне частот.

Такая величина является компромиссной с точки зрения обеспечения как расчетного сопротивления анодной нагрузки лампы в номинальных условиях с одной стороны, так и коэффициента демпфирования с другой.

Расчёт числа витков первичной обмотки

Число витков первичной обмотки вычисляется из условия непревышения максимально допустимого значения индукции в магнитопроводе:

где U1M — максимальная амплитуда напряжения на зажимах первичной обмотки, В;

ВМП — максимально допустимая амплитуда переменной составляющей индукции, Гс.

где ВM — изморенное ранее значение максимальной индукции, Гс.

Опыт расчета и изготовления значительного количества разнообразных трансформаторов (как выходных, так и межкаскадных) позволяет сделать вывод, что значение ВМП не должно превышать 3500 — 4000 Гс для пластинчатых магнитопроводов (шихтованных) и 5000 Гс для витых разрезных (ленточных).

Следует отметить, что витые сердечники, несмотря на более высокие качественные параметры в силовых трансформаторах, несколько уступают пластинчатым для применения в выходных.

Искажения сигнала, вносимые трансформатором из-за нелинейности характеристики В/Н при использовании витых магнитопроводов проявляются при меньших значениях индукции, хотя, после появления, нарастают медленнее.

Это явление объясняется тем, что магнитный поток концентрируется во внутренних витках магнитопровода, где длина силовой линии короче. В результате сердечник постепенно насыщается, начиная от внутренних слоев и заканчивая внешними.

Внутренние слои оказываются насыщенными гораздо раньше внешних, что проявляется в виде небольшого искривления характеристики намагничивания железа даже при средней индукции 4000 — 6000 Гс.

Более высокое качество железа витых сердечников несколько смягчает этот эффект, но полностью устранить не может.

Количество витков первичной обмотки можно определить и по другой формуле, исходя из условия обеспечения расчетной индуктивности:

где L1 требуемая индуктивность обмотки, Гн;

m — магнитная проницаемость материала сердечника при заданных ампер-витках постоянного подмагничивания.

Однако, практика показывает, что расчет по формуле (10) приводит к заниженному числу витков по сравнению с (8), а это недопустимо из-за резкого роста искажений на низких частотах вследствие насыщения магнитопровода.

Только при высокой нижней граничной частоте (более 100 — 150 Гц) формула (10) дает большее значение числа витков. Кроме того, она неудобна тем, что в расчет входит величина m , зависящая от ампер-витков постоянного подмагничивания, определить которую до экспериментального изготовления трансформатора можно лишь приблизительно по графикам соответствующих зависимостей [1], [3], [4].

Расчёт числа витков вторичной обмотки

Число витков вторичной обмотки рассчитывается как:

Расчёт диаметра провода

Диаметр провода (чистой меди) первичной обмотки:

Формула (13a) справедлива для расчета средней длины витка на броневом сердечнике (Рис. 1а), а формула (13b) — на стрежневом (Рис. Ч в), величина dk (см) — толщина материала каркаса.

Диаметр провода вторичной обмотки:

Если вторичная обмотка состоит из нескольких параллельно соединенных секций, то диаметр провода секции рассчитывают как:

Размещение обмоток трансформатора

После расчета обмотки необходимо проверить их размещение в окне магнитопровода. Наилучшим считается такое размещение, когда и первичная и вторичная обмотки укладываются в целое число слоев и полностью заполняют окно магнитопровода. Для достижения такого результата допустимо варьировать число витков и диаметр провода обмоток в небольших пределах (до _* 10%).

Читайте также  Соединение углового профиля для светодиодной ленты

Заполнение окна магнитопроводаможно проверить по формулам:

где A1 , А2, Aиз — толщины первичной обмотки , вторичной обмотки и межобмоточной изоляции;

р1, р2 — число слоев первичной и вторичной обмоток;

d`1, d`2 -диаметры проводов с изоляцией первичной и вторичной обмоток;

dиз — толщина межслойной изоляции.

Индуктивность рассеяния трансформатора достаточной точностью определяется по формуле;

где l0 — средняя длина витка, см;

h' — высота намотки слоя, см;

к — количество секций.

Для получения расчетной величины индуктивности рассеяния, обмотки трансформатора в большинстве случаев необходимо секционировать. Наиболее просто и эффективно выполнить послойное

Рис. 3 Пример размещения обмоток в окне магнитопровода (цилиндрическое секционирование)

(цилиндрическое) секционирование, когда обмотки наматываются на каркас частями, а в конце соединяются последовательно или параллельно. Чаще всего применяют последовательное включение секций первичной обмотки и параллельное — вторичной. Суммарное число секций первичной и вторичной k должно быть таким, чтобы индуктивность рассеяния LS, вычисленная по (17), не превышала найденную при электрическом расчете оконечного каскада.

Один из вариантов размещения секций на каркасе приведен на Рис. 3. Необходимо помнить, что общее число секций первичной и вторичной обмотки должно быть нечетным, а крайние секции (т.е. непосредственно лежащая на каркасе и внешняя) должны принадлежать одной обмотке и иметь половинное число витков по отношению к внутренним секциям той же обмотки.

Только в этом случае выполняется условие компенсации полей рассеяния соседних секций и индуктивность рассеяния будет соответствовать расчетной.

Если обмотка распределена на двух катушках (стержневые трансформаторы), то секции ее должны чередоваться от одной катушки к другой.

Это условие относится и к двухтактным трансформаторам, где обмотки каждого плеча обязательно должны иметь одинаковое число секций на одном и на другом стержнях магнитопровода.

Определение величины немагнитного зазора

Неотъемлемой конструктивной особенностью трансформатора выходного однотактного каскада является немагнитный зазор между частями магнитопровода. При его отсутствии постоянная составляющая анодного тока выходной лампы, протекающая через первичную обмотку, вызывает насыщение железа и, как следствие, происходит катастрофическое падение магнитной проницаемости и возрастание искажений, вносимых трансформатором.

Зазор не позволяет магнитопроводу войти в насыщение от постоянного подмагничивания (поскольку он эквивалентен многократному увеличению длины магнитной силовой линии для постоянной составляющей магнитного потока) и, в то же время, не влечет за собой драматического снижения величины m . Оптимальным является такой немагнитный зазор, при котором индукция, соответствующая постоянной составляющей магнитного потока, находилась бы примерно на середине линейной части характеристики намагничивания.

Для наиболее распространенных типов электротехнической стали величина зазора может быть ориентировочно определена по формуле:

I0 — ток постоянного подмагничивания, А;

lC — длина силовой линии, см.

Более точно величину зазора подгоняют экспериментально при номинальном токе подмагничивания, исходя из условий получения наибольшей выходной мощности на нижней граничной частоте и минимальных искажении при половине номинальной выходной мощности на той же частоте сигнала.

Поскольку теоретический расчет оптимального зазора достаточно сложен и требует значительного количества экспериментальных данных о качестве применяемого железа, то представляется более целесообразным использовать практический подбор зазора в готовом трансформаторе.

Паразитные ёмкости и методы борьбы с ними

В заключение следует обратить внимание на такие неприятные и неизбежные явления, как межобмоточная и распределенная емкости трансформатора.

Совместно с индуктивностями обмоток (или их частями) и индуктивностями рассеяния, они образуют паразитные колебательные контуры, резонирующие в области верхних звуковых и ультразвуковых частот.

Эти резонансы искажают частотную и фазовую характеристики трансформатора (набег фазы из-за распределенной емкости плохо сконструированного трансформатора на высших частотах может достигать 400° — 7000° и, кроме того, быть немонотонным). Радикального средства борьбы с этими явлениями нет, но уменьшить их можно следующими способами:

  1. Равномерной плотной укладкой (виток к витку) обмоток трансформатора.
  2. Использованием межслойной изоляции внутри секций каждой обмотки (бумага 0,05 — 0,1 мм).
  3. Увеличение толщины межобмоточной изоляции (что несколько уменьшает коэффициент заполнения окна, зато существенно снижает междуобмоточную емкость).
  4. Использование магнитопровода расчетного размера. (Увеличение габаритов трансформатора против необходимого введет к росту указанных емкостей, а увеличение длины витка — к росту Ls).
  5. Укладка расчетного числа секций (непомерное увлечение секционированием резко увеличивает междуобмоточную емкость).

Пропитка катушки трансформатора различными компаундами имеет как достоинства, так и недостатки. К первым относится увеличение механической прочности и снижение резонансов конструкции. Ко вторым — увеличение паразитных емкостей и снижение частот паразитных электрических резонансов вплоть до звукового диапазона. Решение о пропитке трансформатора должно приниматься только после тщательного анализа всех «за» и «против».

Заключение

И, наконец, хотелось бы напомнить, что выходной трансформатор — это клубок компромиссов. Не следует гнаться за идеальными параметрами и огромной массой: в 99% случаев улучшение одного параметра ведет к ухудшению нескольких других.

Излишнее количество секций увеличивает межобмоточную емкость; излишнее число витков — индуктивность рассеяния и активное сопротивление. Таких примеров множество. При расчете задавайтесь разумными исходными параметрами и не делайте из трансформатора противовес для башенного крана.

Не требуйте от трансформатора невозможного, но разумно используйте то, что он может предоставить.

Литература

  1. Цыкни Г.С. Трансформаторы низкой частоты. М., Связьиздат, 1955.
  2. Андронников Д.В. «Три электрода в один такт». «Вестник А.Р.А.» No. 3, 1998 г.
  3. Войшвилло Г.В. Усилители низкой частоты на электронных лампах. Изд. 2.
  4. Белопольский И.И. Электропитание радиоаппаратуры. М., Энергия, 1965.
  5. Лукачер. Расчет выходных трансформаторов, ж. Радиофронт No. 22 1935.

Источник: https://vt-tech.eu/articles/lamps/53-otputtrans.html