Содержание
- 1 Методы регулировки яркости для импульсных драйверов светодиодов
- 2 Управление яркостью светодиодной ленты. Драйверы, диммеры, контроллеры
- 3 Схема ШИМ-регулятора яркости светодиодов для сборки своими руками
- 4 Диммер для светодиодной ленты 12 Вольт: виды, подключение
- 5 Управление яркостью светодиодной ленты — Лед совет
Методы регулировки яркости для импульсных драйверов светодиодов
- 16 апреля 2015 г. в 16:02
- 661
Экспоненциальный рост светодиодного освещения сопровождается расширением выбора микросхем для управления светодиодами. Импульсные драйверы светодиодов давно заменили линейные источники тока, которые потребляют значительно больше энергии.
Все приложения — от карманного фонаря до табло стадионов — требуют точного управления стабилизированным током. Во многих случаях необходимо обеспечить изменение выходной интенсивности свечения светодиодов в режиме реального времени. Эту функцию обычно называют регулировкой яркости светодиодов.
В данной статье представлены базовые понятия из теории светодиодов, а также некоторые методы регулировки яркости для импульсных драйверов светодиодов.
Яркость и цветовая температура светодиодов
Яркость светодиодов
Понятие яркости видимого света, излучаемого светодиодом, объясняется достаточно просто. Численное значение воспринимаемой яркости светодиода можно легко измерить в единицах плотности светового потока, которые называют канделами (кд). Суммарная выходная мощность светодиода измеряется в люменах (лм).
Важно также понять, что средний прямой ток светодиода определяет яркость светодиода. На рисунке 1 показана зависимость прямого тока светодиода от светового выхода. Из рисунка видно, что эта зависимость является линейной в широком диапазоне применяемых значений прямого тока IF. Заметим, что при увеличении IF нелинейность возрастает. Когда ток начинает выходить за линейную область, происходит уменьшение эффективности (лм/Вт).
Цветовая температура светодиода
Работа светодиода в режиме, превышающем диапазон линейного изменения светового выхода, приводит к преобразованию выходной мощности светодиода в тепло. Оно, в свою очередь, создает нагрузку на драйвер светодиода и усложняет систему отвода тепла.
Цветовая температура является показателем, который описывает цвет свечения светодиода и указывается в технической документации на светодиод. Цветовая температура светодиода определяется в пределах диапазона значений и меняется в зависимости от прямого тока, температуры перехода и срока службы светодиода.
Более низкая цветовая температура соответствует красно-желтым цветам (которые называют теплыми), а более высокая цветовая температура — сине-зеленым цветам (холодным).
Во многие цветных светодиодах специфицируется преобладающая длина волны, а не цветовая температура, и, кроме того, допускается сдвиг длины волны.
Методы регулировки яркости светодиодов
Существуют два популярных метода регулировки яркости светодиодов в схемах импульсных драйверов: ШИМ-регулировка и аналоговая регулировка. Оба метода контролируют усредненный во времени ток через светодиод или цепочку светодиодов, но между ними есть и различия, которые становятся ясными при обсуждении преимуществ и недостатков двух типов схем регулировки.
На рисунке 2 показан импульсный драйвер светодиодов, включенный в понижающей топологии. Напряжение VIN всегда должно быть выше напряжения на светодиоде плюс напряжение на RSNS. Ток в катушке индуктивности является током светодиода. Стабилизация тока происходит с помощью контроля напряжения на выводе CS. Когда напряжение на выводе CS начинает падать ниже установленного напряжения, рабочий цикл импульсов тока, протекающего через катушку L1, светодиод и резистор RSNS, растет, тем самым увеличивая средний ток светодиода.
Аналоговая регулировка яркости
Аналоговая регулировка с помощью подстройки RSNS
Из рисунка 2 видно, что изменение сопротивления RSNS приводит к соответствующему изменению тока светодиода при фиксированном опорном напряжении на выводе CS. Если бы можно было найти потенциометр, способный управлять высоким током светодиода, а также работать в диапазоне до 1 Ом, то это был бы практически осуществимый метод регулировки яркости светодиодов.
Аналоговая регулировка с помощью управления постоянным напряжением на выводе CS
Более сложным методом регулировки является прямое управление током светодиода посредством подачи напряжения на вывод CS. Источник напряжения обычно включают в цепь обратной связи, ток в которой формируется усилителем (см. рис. 2). Ток светодиода можно контролировать с помощью коэффициента усиления усилителя. С помощью цепи обратной связи можно реализовать токовую и тепловую защиту светодиода.
Недостатком аналоговой регулировки является то, что цветовая температура излучаемого света может меняться в зависимости от тока светодиода. В случае, когда цвет свечения светодиода является критически важным параметром или у конкретного светодиода наблюдаются заметные изменения цветовой температуры при изменении тока светодиода, регулировка яркости путем подстройки тока светодиода становится недопустимой.
ШИМ-регулировка
При методе ШИМ-регулировки ток через светодиод пропускается на короткие периоды времени. Частота этих циклов запуска-перезапуска тока должна превышать частоту, детектируемую человеческим глазом, чтобы предотвратить эффект мерцания. Обычно используют частоту около 200 Гц или выше. Яркость светодиода в этом случае пропорциональна рабочему циклу сигнала регулировки в соответствии с формулой:
IDIM-LED — DDIM ILED,
где IDIM-LED — средний ток светодиода, DDIM — рабочий цикл сигнала регулировки, ILED — номинальный ток светодиода, который устанавливается резистором RSNS, как показано на рисунке 3.
Многие современные драйверы светодиодов оборудованы специальным выводом ШИМ-регулировки (DIM), на который можно подавать ШИМ-сигнал с широким диапазоном частот и амплитуд, что обеспечивает простое сопряжение с внешней логикой. Сигнал, подаваемый на вывод DIM, отключает лишь выход схемы, оставляя внутренние блоки в работающем состоянии, чтобы предотвратить задержку запуска микросхемы. Можно также использовать вывод разрешения выхода и другие логические функции микросхемы.
Управление драйвером светодиода с помощью ШИМ-сигнала
2-проводная ШИМ-регулировка
2-проводная ШИМ-регулировка — это популярный метод, используемый в системах внутреннего освещения автомобиля. Поскольку VIN модулируется на уровне ниже 70% от VIN-NOMINAL, вывод VINS (см. рис. 3) детектирует изменение напряжения и преобразует входной ШИМ-сигнал в соответствующий ШИМ-сигнал на выходе. Недостатком такого метода является то, что источник питания преобразователя должен содержать схему, формирующую ШИМ-сигнал на своем DC-выходе.
Быстрое ШИМ-регулирование с помощью шунтирующего устройства
Из-за задержки выключения и запуска выхода преобразователя имеются ограничения на частоту ШИМ-сигнала регулировки и диапазон рабочих циклов. Чтобы уменьшить эту задержку, параллельно светодиоду или цепочке светодиодов можно включить внешний шунтирующий компонент, такой как FET, чтобы обеспечить путь для выходного тока преобразователя, минуя светодиод, как показано на рисунке 4.
Рис. 5. Сравнение задержки включения при использовании вывода DIM и шунтирующего FET |
Ток в катушке индуктивности не исчезает во время отключения светодиода, что исключает длительную задержку его нарастания и спада. Время задержки определяется теперь минимальным временем нарастания и спада сигнала шунтирующего прибора.
На рисунке 4 показана микросхема LM3406 с шунтирующим FET, а на рисунке 5 сравнивается задержка включения/выключения светодиода при использовании вывода DIM и шунтирующего FET.
Эти измерения были выполнены при выходной емкости 10 нФ с использованием в качестве шунтирующего FET транзистора Si3458.
При шунтировании тока светодиода в случае использования импульсных преобразователей следует соблюдать меры предосторожности из-за возможных выбросов выходного тока при включении FET. Семейство драйверов светодиодов LM340x представляет собой преобразователи с контролируемым временем включения, в которых не наблюдается выбросов тока. Номинал выходной емкости на светодиоде должен быть малым, чтобы обеспечить максимальную скорость переключения.
Недостатком схемы быстрой регулировки яркости являются потери эффективности. Когда шунтирующий прибор включен, рассеиваемая мощность, равная VSHUNT DEVICE ILED, теряется в виде тепла. Использование FET с низким значением Rds(on) позволяет минимизировать потери эффективности.
LM3409 обеспечивает множество функций регулировки яркости
Рис. 6. Схема включения LM3409 при аналоговой регулировке яркости |
Микросхема LM3409 от National Semiconductor представляет собой уникальный драйвер светодиодов, который имеет необходимую функциональность для простой аналоговой и ШИМ-регулировки яркости. Этот прибор обеспечивает четыре возможных способа реализации регулировки яркости светодиода.
- Аналоговая регулировка с помощью прямого управления вывода IADJ от источника напряжения в диапазоне 0…1,24 В.
- Аналоговая регулировка с помощью потенциометра, включенного между выводом IADJ и землей.
- ШИМ-регулировка с помощью вывода разрешения.
- ШИМ-регулировка с помощью внешних шунтирующих FET.
Схема включения микросхемы LM3409 для аналоговой регулировки с использованием потенциометра показана на рисунке 6. Внутренний 5-мкА источник тока создает падение напряжения на RADJ, которое, с свою очередь, позволяет изменять порог внутренней чувствительности по току. С той же целью вывод IADJ может напрямую управляться от источника постоянного напряжения.
На рисунке 7 показан график зависимости тока светодиода от сопротивления потенциометра, включенного между выводом IADJ и GND. Плоский участок кривой при значении тока в 1 А соответствует максимальному номинальному току светодиода, который устанавливается резистором контроля тока RSNS, показанным на рисунке 4.
Рис. 8. Зависимость тока светодиода от напряжения на выводе IADJ
Оба варианта аналоговой регулировки просты в реализации и обеспечивают весьма линейные уровни снижения яркости светодиода вплоть до 10% от максимального значения.На рисунке 8 показан ток светодиода как функция напряжения на выводе IADJ. Заметим, что на этом графике виден тот же максимальный ток светодиода, установленный резистором RSNS.
Заключение
Существует множество методов регулировки яркости светодиодов, управляемых от импульсных стабилизаторов. Два основных вида регулировки — аналоговая и ШИМ-регулировка — имеют свои преимущества и недостатки.
ШИМ-регулировка существенно снижает отклонение цвета свечения светодиода при изменении яркости за счет применения дополнительной логики для формирования ШИМ-сигнала.
Аналоговая регулировка может быть более простой в реализации, но она не подходит для приложений, в которых требуется постоянная цветовая температура светодиодов.
Источник:
1. Rich Rosen. Dimming Techniques for Switched Mode LED Drivers//Power Designer, №126.
www.russianelectronics.ru
Источник: https://www.elec.ru/articles/metody-regulirovki-jarkosti-dlja-impulsnykh-drajve/
Управление яркостью светодиодной ленты. Драйверы, диммеры, контроллеры
Светодиодные ленты быстро завоевали популярность и прочно входят в нашу жизнь и быт. Они оказались незаменимыми для декоративной или фоновой подсветки интерьеров жилых и офисных помещений. В то же время эти световые приборы обладают уникальными качествами для создания необычных эффектов при создании архитектурного светового дизайна в экстерьере как частных домов, так и административных зданий или промышленных объектов.
Но, в отличие от тех же светодиодных ламп, оснащённых схемой управления и предназначенных для непосредственного включения в электрическую сеть, светодиодные ленты должны включаться через дополнительные адаптеры‑драйверы (блоки питания, диммеры, блоки управления).
Подробнее об их характеристиках тут.
С одной стороны, это создаёт дополнительную сложность при монтаже, с другой — позволяет значительно разнообразить способы включения, создавая уникальные световые эффекты, а также наладить управление яркостью их свечения, или диммирование.
Особенности управления светодиодными лентами
Полупроводниковый светодиод — прибор специфический. Он обладает значительно нелинейной вольт‑амперной характеристикой (ВАХ). Протекающий через него ток, начиная с некоторого «порогового» значения, растёт очень сильно, вплоть до перегорания самого светодиода, даже при небольшом изменении падения напряжения на нём. Поэтому подключение его напрямую к источнику питания либо не даст никакого эффекта, если ЭДС источника меньше порога «открывания» диода, либо в противном случае вызовет мгновенное перегорание светодиода.
Это заставляет в схемах устройств управления использовать элементы, ограничивающие ток через прибор, так в схемотехнике и называемые «источниками стабильного тока».
В простейшем случае такую функцию может выполнять обычный резистор, а чтобы обеспечить эту стабильность, его сопротивление должно быть достаточно большим. Но при этом и ЭДС источника напряжения должна быть высокой.
Казалось бы, чего проще! Подключаем светодиод через гасящее сопротивление прямо к электрической сети — напряжение высокое, ограничительный резистор потребуется большого значения: всё, как мы хотели! Но у этой схемы есть существенный недостаток. К примеру:
- Для среднестатистического белого светодиода в рабочем режиме при падении напряжения около 3 V, ток ≈ 20 mA.
- Сопротивление гасящего резистора — (220 – 3) / 0,02 ≈ 10,85 κΩ.
- При этом рассеиваемая на нём мощность — 217 × 0,02 ≈ 4,3 Wt.
Как видно из примера, на ограничительном резисторе будет бесполезно теряться электрическая мощность, большая по величине, чем требуется самому светодиоду для его работы.
Для того чтобы компенсировать недостатки такой схемы, светодиодные осветительные приборы должны запитываться от специального низковольтного источника, обеспечивающего им при этом стабильный выходной ток. В осветительных светодиодных лампах стандартов Е27, Е14 и других такая схема встроена в конструкцию их цоколя, подобно тому, как выполнено управление малогабаритными люминесцентными газоразрядными лампами. Притом в зависимости от назначения включается не только драйвер диода, но и схема диммера.
Для светодиодных лент такой источник тока изготавливается в виде отдельного модуля. Он имеет выходное напряжение 12 или 24 V с ограничением выходного тока. Подключаемая к нему лента должна иметь соответствующее входное напряжение, ограничительные резисторы для него установлены конструктивно на самой ленте, обеспечивая оптимальный режим её работы. Выходная мощность блока питания диммера и блока управления должны соответствовать количеству светодиодных модулей ленты.
Соотношение мощности блока к количеству модулей ленты
Лента также должна иметь определённую длину, не превышающую некоторого значения — обычно это 5 м. Если требуется лента меньшей длины, её можно укоротить, но только в указанных для этого точках. Когда же требуется удлинить ленту, то следующий её кусок должен подключаться не к выходу предыдущего, а непосредственно к блоку питания либо к специальному усилителю, даже если для этого придётся проложить дополнительную пару проводов.
После того как обеспечено правильное электропитание этих приборов, перед нами встаёт задача регулировки яркости их свечения. О том, как регулируется яркость диммерами у светодиодных ламп, читайте в этой статье. Сейчас же рассмотрим то, что касается светодиодных лент.
Основные виды диммеров для светодиодных лент
Для решения поставленного вопроса можно опять воспользоваться простейшим способом регулировки: переменным резистором — реостатом или потенциометром. Но здесь снова вступает в игру высокая нелинейность ВАХ светодиода: регулировка, даже при использовании потенциометров с логарифмической характеристикой изменения сопротивления, происходит на очень маленьком участке их шкалы.
К тому же потери мощности такой схемы хотя и не такие значительные, но всё же существенно понижают её энергоэффективность.
Вместо пассивных регуляторов для этой цели были разработаны активные диммерные регулирующие схемы на полупроводниковых приборах:
Управляемые источники тока
Аналоговые регулирующие схемы, которые позволяют поддерживать стабильный выходной ток в необходимом диапазоне регулировки при малом падении напряжения, а следовательно, и при небольших потерях мощности на регулирующем элементе.
Однако эти устройства не лишены и недостатков:
- При изменении рабочего тока через светодиод в пределах 20~100 mA довольно широко меняется рассеиваемая на нём мощность, а следовательно, и температура прибора.
- При сильном нагревании светодиода существенно изменяются многие его характеристики, в том числе цветовая температура, что выражается в изменении спектрального состава излучаемого света.
- Длительная работа при сильном нагреве снижает долговечность прибора и увеличивает риск его отказа.
Импульсные регуляторы яркости свечения
Большинства этих недостатков лишены импульсные регуляторы яркости свечения светодиодов, наиболее часто используемым видом которых являются широтно‑импульсные модуляторы (ШИМ). Причем вследствие очень малой инерционности светодиодов, такие диммеры оказались для них наиболее эффективными.
Мини-диммер ШИМ
Суть их действия заключается в изменении длительности рабочей доли периода прямоугольно‑импульсного тока, подаваемого на прибор, относительно нулевого уровня. Эта доля периода, когда в нём действует максимальное напряжение, и называется широтой.
Она может изменяться от 0 до 100%, соответственно вызывая изменение действующего значения напряжения на приборе.
Выходной ток при этом остаётся стабильным на уровне наиболее оптимального. Спектральный состав излучения не меняется, рассеиваемая мощность держится в диапазоне номинальных значений.
Да и потери мощности на самом диммере при импульсном режиме его работы остаются минимальными.
Кроме того, регуляторы с импульсным методом регулировки наиболее подходят для цифрового и компьютерного управления освещением.
Схема подключения диммера к светодиодной ленте
В конструкции светодиодных лент применяются два типа излучателей‑светодиодов:
- RGB — трёхцветные, которые при смешении дают белое свечение. При раздельном включении могут использоваться для создания различных цветовых эффектов.
- Люминофорные — используют вторичное излучение специального жёлтого слоя‑люминофора, освещаемого мощным синим светодиодом.
Для их питания должны применяться соответствующие конструкции драйверов и диммеров, сложность схем которых определяется кругом поставленных задач и набором требуемых эффектов.
Для белых монокристалльных лент — одноканальные диммеры, включаемые после блока питания.
Схема подключения одноканального диммера
Для RGB‑лент — трёхканальные контроллеры с раздельным управлением по каждому каналу.
Схема подключения трехканального диммера
Различаются диммеры также и способом регулировки:
- с помощью потенциометра, встраиваемого в стандартную настенную коробку выключателя;
- инфракрасным или радиочастотным пультом дистанционного управления;
- подключением в компьютерную сеть по проводному интерфейсу Ethernet или беспроводному Wi‑Fi либо Bluetooth.
Помимо отдельных модулей диммеров выпускаются также комбинированные устройства, совмещённые в одном корпусе с драйвером.
Преимущества и недостатки
Основным недостатком дешёвых ШИМ‑регуляторов является повышенное мерцание, особенно при маленьких уровнях яркости, когда глаз особенно чувствителен к таким колебаниям. Кроме неприятных ощущений, при длительном влиянии оно может вызывать психофизиологические воздействия в виде головных болей, повышения усталости, ухудшения внимания и остроты зрения.
Для качественного управления светодиодами промышленность сейчас выпускает специализированные микроконтроллеры. Например, микросхема LM3409, позволяет осуществлять управление в двух аналоговых и двух импульсных режимах.
Здесь надо ещё сказать, что хороший диммер должен учитывать не только характерную нелинейность полупроводникового светодиода, но и нелинейную характеристику нашего зрительного восприятия при малых уровнях яркости.
Преимущества светодиодных светильников сегодня очевидны всем. А рост производства и непрерывно снижающиеся цены дают возможность каждому оценить их в действии. Тем более что они перестают быть просто осветительными приборами, а становятся ещё и уникальными элементами декора.
Пост опубликован: 05.01.2015
Источник: http://indeolight.com/tehnologii-i-normy/upravlenie-osveshheniem/upravlenie-yarkostyu-svetodiodnoj-lenty.html
Схема ШИМ-регулятора яркости светодиодов для сборки своими руками
С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.
С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.
Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток — низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза.
Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов.
Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц
Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -Uпит.
Как только напряжение на нём достигнет уровня 2/3Uпит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -Uпит.
Достигнув отметки 1/3Uпит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.
Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.
В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.
Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.
Плата и детали сборки регулятора яркости
Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.
Плата в файле Sprint Layout 6.0: reguljator-jarkosti.lay6
После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.
- DA1 – ИМС NE555;
- VT1 – полевой транзистор IRF7413;
- VD1,VD2 – 1N4007;
- R1 – 50 кОм, подстроечный;
- R2, R3 – 1 кОм;
- C1 – 0,1 мкФ;
- C2 – 0,01 мкФ.
Заказать готовую сборку от автора можно здесь.
Практические советы
Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.
Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.
Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.
Источник: https://ledjournal.info/shemy/shim-regulyator-yarkosti-svetodiodov.html
Диммер для светодиодной ленты 12 Вольт: виды, подключение
Диммер для светодиодной ленты (он же светорегулятор) используется для регулировки яркости светодиодного освещения за счет изменения подаваемого напряжения или тока (в зависимости от способа). С его помощью можно в любой момент «приглушить» свет в помещении или сделать его очень ярким буквально одним нажатием кнопки.
Регулятор позволяет продлить срок службы светодиодной ленты, поскольку снижение интенсивности светового потока не дает светодиодам перегреваться, а ведь именно перегрев негативно влияет на продолжительность работы любых led-светильников.
Диммеры, используемые для ламп накаливания (статья про диммеры для led-ламп), не подходят для светодиодных лент из-за разного принципа работы.
Любой диммер подключается между самим светильником (лентой) и блоком питания. При этом нужно обязательно учитывать номинальное напряжение прибора – если блок питания рассчитан на 24в (или любое другое напряжение), с ним нельзя использовать диммер на 12в.
Кстати, самыми «популярными» в быту и наиболее широко используемыми считаются диммеры на 12 вольт, именно они используются для регулировки яркости светодиодных лент.
По способу управления диммеры подразделяются на:
- Поворотные – самая простая модель, ничего лишнего. Регулировка яркости освещения производится путем поворота ручки.
- Поворотно-нажимные – включаются нажатием на ручку, яркость регулируется ее вращением.
- Клавишные – внешне напоминают обычный выключатель. Простое нажатие включает свет, удержание кнопки регулирует яркость.
- Сенсорные диммеры не имеют в своей конструкции движущихся деталей, вместо них установлена сенсорная панель. В остальном принцип действия такого прибора особо ничем не отличается от более простых моделей.
- С дистанционным управлением – регулировка осуществляется при помощи пульта.
Практически все регуляторы просты и удобны в эксплуатации, не имеют серьезных недостатков, но как и многие электроприборы, не выносят перегрева и скачков напряжения в сети. Некоторые старые модели могут создавать электромагнитные помехи, в том числе мешать работе радио (у современных светорегуляторов этого недостатка нет).
Виды
Разновидностей диммеров выпускается великое множество. При желании такое устройство можно подобрать под любые задачи и потребности. В этой статье мы коротко расскажем лишь о некоторых популярных видах.
- Мини-диммеры отличаются компактными размерами и небольшим весом. При этом могут быть с кнопочным, сенсорным или дистанционным управлением.
- Диммеры с аудио-входом позволяют не просто регулировать яркость света, но даже создавать эффект цветомузыки в автоматическом режиме.
- Диммеры для rgb-ленты. Rgb-лента отличается от обычной (монохромной) светодиодной «многоцветностью», то есть, такая лента содержит красные (red), зеленые (green) и синие (blue) диоды, что позволяет создавать различные цветовые эффекты. Ниже приводится простейшая схема подключения rgb-ленты к сети 220 вольт.
На видео интересный пример работы свето регулятора с аудио-входом. Реализована цветомузыка из светодиодной ленты RGB. Лента меняет цвета и уровень свечения в такт музыке.
Кстати: в обоих вышеописанных случаях применяются диммеры с контроллерами ( микроконтроллерами). Сам по себе диммер не способен работать по определенной программе – он служит только для изменения яркости диодов. Чтобы «заставить» светорегулятор менять яркость в соответствии с заданной схемой, применяются rgb и аудио — контроллеры.
Подключение к led-ленте
Несмотря на то, что для разных видов лент схемы подключения также будут разными, в любой схеме диммер с одной стороны подключается к блоку питания. Если лента монохромная, то ее подключение будет напрямую через диммер, если многоцветная, то в схеме добавится еще и контроллер – между диммером и непосредственно лентой (если только контроллер не объединен с регулятором изначально).
Иногда в схему включается еще и усилитель – если мощность подключаемых приборов превосходит значение мощности питающего элемента. Пример обычной схемы подключения светодиодной ленты с использованием диммера:
Диммер на микросхеме своими руками
Несмотря на то, что в продаже можно найти множество разновидностей диммеров, некоторые умельцы предпочитают собрать такие устройства самостоятельно. В качестве примера для сборки рассмотрим диммер на микросхеме, достаточно простой в настройке и обладающий функциями защиты.
Опорное напряжение на управляющем электроде создается при помощи резистора R2. Значение на выходе регулируется от 12в (максимальное) до любого минимального, вплоть до десятой доли вольта. Для оптимального охлаждения интегрального стабилизатора (КРЕН) необходима установка дополнительного радиатора, и это, пожалуй, единственный серьезный недостаток такого самодельного регулятора освещения.
Стоит ли использовать диммер для светодиодной ленты?
Однозначно – стоит. Установка такого устройства под силу даже непрофессионалу, но сам светорегулятор многократно расширяет функции и возможности led-ленты. Например, можно отказаться от большого количества светильников разной мощности, поскольку одна и та же лента будет светить с разной яркостью, заменяя и большую люстру, и маленький ночник.
Подобное освещение очень удобно в детской комнате – когда ребенок уснет, можно будет просто приглушить свет до минимума, не опасаясь ни за проводку, ни за то, что чадо проснется ночью в темноте и испугается.
Любителям домашних вечеринок однозначно придутся по душе световые эффекты, которые можно создать при помощи диммера с аудио-входом. И это лишь малая часть способов применения диммеров и светодиодных лент в обычных квартирах и домах.
Источник: http://ledno.ru/lenty/led-dimmer.html
Управление яркостью светодиодной ленты — Лед совет
Благодаря своему удобству и универсальности светодиодные ленты стали практически незаменимыми при обустройстве самых разных систем освещения. Из них можно создавать сложные конфигурации для оформления интерьеров и экстерьеров, фоновой подсветки витрин, декоративных инсталляций и дизайнерского оформления стендов. При этом специализированные системы управления позволяют регулировать яркость освещения и даже создавать динамические спецэффекты.
Многим кажется, что дополнительное оборудование создаёт сложности в монтаже и требует специальных знаний. Действительно, в отличие от светодиодных ламп, здесь приходится самостоятельно подбирать и устанавливать блоки питания, диммеры и регуляторы. Однако на практике разобраться в устройстве питания и управления для диодных лент достаточно просто.
Питание светодиодных лент и управление их яркостью
особенность светодиода – нелинейная зависимость протекающего тока от приложенного напряжения. Рабочее напряжение типового белого светодиода – 3 В, а ток – 20 мА, и даже при незначительном превышении этих параметров, диод выходит из строя, что делает его очень требовательным к качеству источника питания, а также усложняет управление его яркостью. Чтобы обеспечить стабильность характеристик, светодиоды устанавливаются группами (обычно по 3), а последовательно с ними подключается ограничительный резистор.
Метеорит72 — лучший интернет магазин светодиодного освещения! Товары высочайшего качества, безупречный сервис, широчайший ассортимент, отличные цены, гарантия. Посмотреть продукцию >>>
К примеру, для последовательной тройки светодиодов на 3 В и 20 мА устанавливается резистор на 150 Ом (в 12-вольтовой ленте).
Когда через цепь протекает ток 20 мА, падение напряжения на резисторе составляет 3 В, но если ток возрастёт до 40 мА, на резисторе просядет уже 6 вольт. Это снижает вероятность выхода светодиодов из строя и позволяет расширить диапазон напряжений питания.
Чтобы обеспечить светодиодной ленте стабильное напряжение, применяется блок питания, рассчитанный на соответствующее напряжение (чаще всего 12 или 24 В). Не так важно, как он выполнен конструктивно. Это может быть и современный импульсный блок питания, и несколько устаревший и более громоздкий трансформаторный. Главное, чтобы он обеспечивал постоянство напряжения во всем диапазоне требуемой мощности.
С регулированием яркости всё несколько сложнее. Здесь неуместны линейные тиристорные диммеры, применяемые для управления обычными лампами накаливания. Рабочий диапазон у светодиодной ленты достаточно узкий, а главное – отсутствует линейная зависимость между напряжением и яркостью. В идеале следует регулировать не напряжение, а ток, протекающий через светодиоды. Для этих целей применяются специальные драйверы, диммеры и контроллеры, которые мы и рассмотрим более подробно.
Устройства для управления яркостью светодиодной ленты
Как мы уже выяснили, классические реостаты, потенциометры и широкодиапазонные диммеры для светодиодов не подходят. В идеале устройство должно гибко управлять выдаваемой мощностью (или хотя бы током), а не напряжением. Но поскольку производители заранее не знают параметры нашей светодиодной ленты, то большинство имеющихся в продаже устройств рассчитаны на плавное регулирование напряжения в пределах 10-12 Вольт (для 12-вольтовых лент).
Для управления яркостью светодиодных лент применяются:
- линейные регуляторы и стабилизаторы напряжения;
- драйверы – импульсные источники питания с управляемым выходом;
- диммеры – импульсные преобразователи с высоким КПД;
- RGB-регуляторы – трехканальные диммеры для управления трехцветными светодиодными лентами;
- RGB-усилители – устройства, управляемые внешними регуляторами, но выдающие значительно большую мощность по каждому каналу;
- DMX-контроллеры – профессиональные устройства для организации эффектных световых шоу.
Указанные в первом пункте линейные регуляторы являются устаревшими и используются всё реже. При тех же мощностных показателях они очень громоздки, отличаются низким КПД и сильно греются. Остальные перечисленные устройства используют более современный принцип работы. Выходным напряжением управляет ШИМ-контроллер, что обеспечивает им очень высокий КПД (80-95%). Рассмотрим их принцип действия подробнее.
Диммеры и драйверы
Объяснить принцип действия импульсных преобразователей проще всего на примере диммера. Это компактное устройство действует по принципу импульсного преобразователя. Энергия передаётся с помощью высокочастотных импульсов, управляемых ШИМ-контроллером. При этом все участвующие в передаче элементы работают на 100% своей мощности в каждом импульсе, следовательно, их КПД максимален. Любую выходную характеристику (напряжение, ток, мощность) можно динамически регулировать, просто меняя количество импульсов.
Чем уже диапазон преобразований, тем более компактным, мощным и эффективным можно сделать устройство. Диммеры для управления яркостью светодиодных лент рассчитаны на входное напряжение 12 В и выходное – 10-12 В, благодаря чему отличаются высоким КПД и малыми размерами. При этом выдаваемая ими мощность может регулироваться в пределах от 0 до 100% от расчетной.
Драйвер представляет собой источник питания, в который уже встроен регулятор выходного напряжения. При этом не имеет значения, осуществляется ли управление непосредственно выходным напряжением преобразователя напряжения, или внутри корпуса встроен отдельный регулирующий элемент. Сегодня распространены оба типа схем, но для потребителя разница не принципиальна.
RGB-регуляторы, усилители и DMX-контроллеры
Это более сложные устройства, предназначенные для управления тремя и более каналами. По сути, они представляют собой устройства, собранные на базе диммеров. При этом RGB-регулятор позволяет менять цвет свечения трёхцветной светодиодной ленты в широких пределах.
Поскольку регуляторы обычно рассчитаны на небольшую мощность, то для запитки длинных лент может потребоваться RGB-усилитель.
Это специальное устройство, способное выдавать в десятки раз большую мощность, но при этом обеспечить соответствие выходных напряжений входным (управляющим).
DMX-контроллеры представляют собой профессиональные многоканальные пульты, позволяющие не только создавать комплексные инсталляции с регулируемым освещением, но и управлять сложными световыми шоу. Существуют модели, похожие на музыкальные пульты с многочисленными ручками и регуляторами. Есть также USB-модели, представляющие собой небольшие боксы, управляемые с компьютера с помощью специализированного ПО.
Управление диммерами, драйверами и регуляторами
Удобство управления – важный параметр устройств, регулирующих яркость светодиодных лент. Сегодня существует четыре основных варианта:
- Стационарное управление с помощью потенциометра, расположенного непосредственно на корпусе диммера или регулятора. Такая конструкция не только проста и дешева, но и наиболее надёжна, поэтому в освещении различных складских, промышленных и прочих помещений обычно применяется именно этот вариант.
- Управление дистанционным пультом. Может применяться инфракрасный пульт, который нужно направлять непосредственно на приемник, или радиочастотный передатчик, который может передавать сигнал даже из другого помещения.
- Управление по Ethernet, Wi-Fi или Bluetooth. Эти технологии становятся всё популярнее, поскольку позволяют управлять освещением с телефона или компьютера даже удаленно.
- Комбинированное управление. Распространены диммеры, имеющие настенное исполнение с потенциометром и снабженные при этом дополнительно электронным управлением с помощью ПДУ или по Wi-Fi.
Основным недостатком недорогих импульсных регуляторов считается мерцание. Именно по этой причине всё ещё широко применяются линейные схемы управления, отличающиеся большими габаритами и низкой эффективностью. Но совершенствование техники приводит к тому, что современные диммеры завоевывают рынок всё более уверенно. Их управляющая микросхема очень точно учитывает нелинейную ВАХ светодиода, а высокая частота работы и хорошие фильтры полностью исключают мигание.
Источник: https://LEDsovet.ru/upravlenie-yarkostyu-svetodiodnoj-lenty/