Расчет токоограничивающего резистора для светодиода

Содержание

Расчет резистора для светодиода: ограничительного, по току и напряжению

Расчет токоограничивающего резистора для светодиода

Современные светодиодные источники света хорошо приспособлены к длительной эксплуатации в сложных условиях. Однако для защиты по току применяют ограничительное электрическое сопротивление. Точный расчет резистора для светодиода поможет подбирать функциональные компоненты схемы без ошибок.

Применение токоограничивающего резистора для светодиода

Резистор применяют для ограничения силы тока

Для декоративного украшения, обеспечения хорошей видимости в затемненном коридоре и решения других практических задач используют светодиоды. Они намного экономичнее по сравнению с классическими лампами накаливания. Высокая прочность предотвращает заражение окружающей среды вредными химическими соединениями, что не исключено после повреждения колбы газоразрядного источника света.

С учетом односторонней проводимости полупроводникового перехода понятна необходимость подключения светодиода к аккумуляторной батарее, другому источнику питания постоянного тока.  Напряжение стандартной бытовой сети выпрямляют, снижают до номинального уровня. Резистором ограничивают силу тока.

Особенности работы и расчеты

Использование резистора при проверке светодиода

Несмотря на существенные преимущества, внимательные пользователи рекомендуют обращать внимание на существенные недостатки светодиодных приборов:

  • полупроводниковые технологии определяют нелинейные вольт-амперные характеристики (ВАХ);
  • повышение напряжения выше определенного порога сопровождается деградацией p-n перехода;
  • на определенном уровне (при прямом или обратном включении) резкое увеличение силы тока повреждает изделие.

Особое значение имеет собственное небольшое сопротивление в рабочем режиме. Относительно небольшое изменение основных параметров источника питания способно повредить полупроводниковый переход. По этой причине в цепь добавляют токоограничительный резистор.

Дополнительный пассивный элемент увеличивает потребление энергии. По этой причине рекомендуется применять такие решения в комбинации со светодиодами небольшой мощности, либо для создания устройств с небольшими рабочими циклами.

Математический расчет

Таблица зависимости напряжения светодиода от его цвета

В простейшей цепи к источнику постоянного тока (I) с определенным напряжением (Uи) на выходных клеммах подключают последовательно токоограничивающий резистор (R) и светодиод. Рассчитать электрическое сопротивление можно с применением известной формулы закона Ома (I = U/R).

Также пригодится второй постулат Кирхгофа. В данном примере он определяет следующее равенство: Uи = Ur + Uc, где Ur (Uc) – напряжение на резисторе (светодиоде) соответственно. Простым преобразованием этих выражений можно получить базовые зависимости:

  • Uи = I*R + I*Rc;
  • R = (Uи – Uc)/ I.

Здесь Rc обозначает дифференциальное сопротивление полупроводникового прибора, которое изменяется по нелинейному закону в зависимости от напряжения и тока. На обратной части вольт-амперной характеристики можно выделить область запирания. Существенное увеличение Rc на этом участке предотвращает движение электронов (Iобр = 0). Однако при последующем увеличении напряжения на определенном уровне (Uобр-м) возникает пробой p-n перехода.

Расчет сопротивления резистора для светодиода при 5 В

Так как драйвер обеспечивает питание постоянным током, особо внимательно нужно изучить соответствующее «прямое» включение. Особенности ВАХ:

  • на первом участке до Uн плавно уменьшается сопротивление и соответствующим образом увеличивается ток;
  • от Uн до Uм – рабочая зона (излучение в световом диапазоне);
  • далее – резкое уменьшение сопротивление провоцирует экспоненциальный рост силы тока с последующим выходом изделия из строя.

Расчет светодиодов выполняют на основе значения рабочего напряжения Uc. Этот параметр производители указывают в сопроводительной документации. Для вычисления электрического сопротивления подходящего токоограничивающего резистора применяют формулу: R = (Uи – Uc)/ I.

Графический расчет

Вольтамперная характеристика светодиодов

Если взять ВАХ, можно применить графическую методику. Исходную графическую и цифровую информацию берут из паспорта, либо на официальном сайте производителя. Алгоритм действий (пример):

  • по исходным данным номинальный ток светодиода (In) составляет 25 мА;
  • от соответствующей точки (1) на вертикальной оси ординат проводят пунктир до пересечения с кривой ВАХ (2);
  • отмечают напряжение источника питания (Uи = 5,5 V) на оси абсцисс (3);
  • проводят линию через точки (2) и (3);
  • пересечение с осью ординат покажет значение максимально допустимого тока (Im = 60 мА).

Расчет сопротивления резистора для обеспечения диоду тока величиной 100 мА при напряжении источника питания – 5 вольт

Далее по классической формуле не сложно рассчитать, какой резистор нужен для светодиода в этом случае: R = Uи /Im = 5,5/ 0,06 ≈ 91,7. В серийном ряду надо выбрать ближайший номинал с небольшим запасом – 100 Ом. Это решение несколько уменьшит КПД. Но в щадящем режиме функциональные компоненты будут меньше греться. Соответствующим образом снизятся нагрузки на полупроводниковый переход. Следует рассчитывать на увеличение длительности срока службы источника света.

Для корректного выбора резистора надо знать мощность (P). Стандартные значения (Вт): 0,125; 0,25; 0,5; 1; 2; 5. Вычисления можно сделать по любым известным параметрам с применением формул: P = Im2 * R = Ur2 / R. Если взять исходные данные рассматриваемого примера: P = 0,06 * 0,06 * 100 = 0, 36 Вт. С учетом типового модельного ряда выбирать надо резистор сопротивлением 100 Ом с мощностью рассеивания 0,5 Вт.

Допуски по точности электрического сопротивления резисторов составляют от 0,001 до 30% от номинала. В маркировке по международным стандартам соответствующие классы обозначают латинскими буквами (D – 0,5%; G – 2%; J – 5%).

Подключение светодиода через резистор

Схема подключения светодиода

С учетом представленных данных можно сделать несколько важных промежуточных выводов:

  • резистивные защитные схемы применяют при маленькой мощности;
  • они не выполняют функции стабилизации;
  • пассивный элемент не способен гасить импульсные броски напряжения.

Приемлемые показатели эффективности можно получить при создании:

  • датчиков;
  • индикаторов;
  • сигнализаторов.

Для маленькой локальной подсветки аквариума такое решение подойдет. Однако вряд ли будет приемлемым длительное потребление большого количества энергии. Отсутствие стабилизации проявляется заметным изменением яркости при увеличении/уменьшении напряжения.

Специалисты рекомендуют при суммарном потреблении больше 1,5-2 Вт использовать источники питания с надежной стабилизацией по току. Эти устройства (диммеры) применяют для подключения групп осветительных приборов и полупроводниковых приборов высокой мощности.

Расчет резистора для светодиода

Программа расчета сопротивления резистора для светодиода

Сделать необходимые вычисления можно в режиме онлайн с помощью специализированного калькулятора. Полноценное использование таких программ предлагается бесплатно.

Однако не всегда имеется доступ к сети Интернет. После изучения достаточно простой методики любой человек сможет оперативно подобрать резистор для светодиода без поиска соответствующего программного обеспечения.

Для наглядной демонстрации алгоритма нужно рассмотреть подключение защитного резистора в цепь питания (5 В) определенного светодиода (Epistar 1W HP).

Технические параметры:

  • мощность рассеивания, Вт – 1;
  • ток, мА – 350;
  • прямое напряжение (типовое/макс.), В – 2,35/2,6.

Для ограничения тока светодиода с учетом рекомендаций производителя подойдет резистор с электрическим сопротивлением R = (5-2,35)/0,35 = 7,57 Ом. По стандарту E24 ближайшие значения – 7,5 и 8,2 Ом. Если воспользоваться стандартными правилами придется выбрать больше значение, которое отличается от расчетного почти на 8,5%. Дополнительную погрешность создаст 5% допуск серийных недорогих изделий. При таком отклонении трудно получить приемлемые по защитным функциям и потребляемой мощности характеристики цепи.

Первый способ решения проблемы – выбор нескольких резисторов с меньшими номиналами. Далее применяют последовательный, параллельный или комбинированный вариант соединения для получения необходимого эквивалентного сопротивления участка цепи. Второй метод – добавление подстроечного резистора.

Расчет мощности рассеивания

Условные обозначения резисторов на схемах

В любом из вариантов при выборе электрического сопротивления цепи следует устанавливать несколько меньший ток, чтобы продлить срок службы светодиода. Чтобы предотвратить повреждение нагревом, изделие применяют в рекомендованном температурном диапазоне. Для Epistar 1W HP – от -40°C до +80°C. При необходимости – применяют монтаж на специализированном радиаторе «звезда». Это дополнение увеличивает эффективную площадь рассеивания тепла.

Для точного подбора оценивают рассеиваемую мощность резистора: P = I2 * R = (0,35)2 * 7,57 = 0,1225 * 7,57 ≈0,93 Вт. Запас по этому параметру делают не менее 20-25%. Номинала 1 Вт недостаточно, поэтому выбирают следующий номинал в стандартном ряду – 2Вт.

Читайте также  Светодиод маркировка выводов

Экономичность собранной схемы проверяют отношением Uc/Uи = 2,35/5 = 0,47 (47%). Итоговый результат показывает, что более половины электроэнергии в данном случае используется впустую. На самом деле показатель еще хуже, так как не вся мощность потребления расходуется светодиодом на излучение в видимой части спектра. Значительная часть – электромагнитные волны ИК диапазона.

Параллельное соединение

Параллельное соединение светодиодов

В любой точке последовательной цепи сила тока одинаковая. Это упрощает расчет, предотвращает аварийные ситуации. При выходе одного элемента из строя отключаются все светодиоды. Поэтому исключено повреждение повышением напряжения. Отмеченные причины объясняют популярность применения данного способа при создании ленточных светильников, иных конструкций.

Определенные преимущества предоставляет применение параллельного соединения. В этом варианте изделие сохраняет частичную работоспособность при повреждении одной цепи. Такое решение обеспечивает одинаковое напряжение в местах подсоединения к источнику питания каждой ветки.

Параллельное подключение подходит для организации независимых схем управления. На этой технологии основаны принципы работы новогодних гирлянд. Отдельные ветки подключаются к источнику питания по заданному программой алгоритму.

Использовать один резистор для нескольких параллельных диодов нельзя. Тщательный выбор сопротивления объясняется необходимостью точной регулировки тока. В некоторых ситуациях ошибки на 0,1-0,5 А становятся причиной поломок, радикального сокращения ресурса.

Реальные технические характеристики светодиодов значительно отличаются даже в одной товарной партии. По этой причине каждую цепь защищают отдельным резистором.

Особенности дешёвых ЛЕД

Сравнение китайской и фирменной светодиодной ленты

Низкая стоимость сама по себе не является доказательством плохого качества. Расширение масштабов производства и совершенствование технологических процессов снижает издержки. Однако в соответствующем сегменте рынка представлены изделия производителей, которые в действительности не соответствуют заявленным характеристикам.

Для определения возможных проблем обращают внимание на следующие параметры:

  • в дешевых моделях основные части конструкции делают из алюминия;
  • медные аналоги тяжелее, эффективнее отводят тепло, отличаются стойкостью к механическим воздействиям;
  • в качественном изделии размер кристалла соответствует стандарту (0,762 х 0,762 мм или другому);
  • о недостатках косвенно свидетельствует искажение пропорций рабочей зоны (прямоугольник вместо квадрата);
  • для повышения надежности ответственные производители увеличивают количество проводников, применяют нити из благородных металлов.

Качественные светодиоды создают световой поток 150-220 люмен в расчете на 1 Вт потребления. Подделки – не более 50-70 лм. При возникновении сомнений следует особенно тщательно выбирать компоненты защиты.

Источник: https://strojdvor.ru/elektrosnabzhenie/kak-podobrat-tokoogranichivayushhij-rezistor-dlya-svetodioda/

Расчет схемы для подключения светодиодов. Калькулятор расчета сопротивления для светодиодов

Расчет токоограничивающего резистора для светодиода

Вот так светодиод выглядит в жизни:
А так обозначается на схеме:

Для чего служит светодиод?
Светодиодыизлучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрическихлампочек, которые часто перегорали и потребляли многоэнергии.

Подключение и пайка
Светодиоды должны быть подключены правильным образом,учитывая их полярность + для анода и к для катода Катод имеет короткий вывод,более короткую ножку. Если вы видите внутри светодиода его внутренности -катод имеет электрод большего размера (но это не официальные метод).

Светодиоды могут быть испорчены в результатевоздействия тепла при пайке, но риск невелик, если вы паяете быстро.Никаких специальных мер предосторожности применять не надо для пайки большинствасветодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – длятеплоотвода.

Проверка светодиодов
Никогда неподключайте светодиодов непосредственно батарее или источнику питания! Светодиод перегорит практически моментально, поскольку слишкомбольшой ток сожжет его. Светодиоды должны иметь ограничительныйрезистор.Для быстрого тестирования 1кОм резистор подходит большинствусветодиодов если напряжение 12V или менее. Не забывайте подключать светодиодыправильно, соблюдая полярность!

Цвета светодиодов
Светодиоды бываютпочти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий ибелый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, изкоторого он сделан, а не цветом пластика его корпуса. Светодиоды любыхцветов бывают в бесцветном корпусе, в таком случае цвет можно узнать тольковключив его…

Многоцветныесветодиоды Устроен многоцветный светодиод просто, как правилоэто красный и зеленый объединенные в один корпус с тремя ножками. Путёмизменения яркости или количества импульсов на каждом из кристаллов можнодобиваться разных цветов свечения.

Расчет светодиодного резистора
Светодиод должен иметь резистор последовательно соединенный в его цепи, дляограничения тока, проходящего через светодиод, иначе он сгорит практическимгновенно… Резистор R определяется по формуле:

R = (VS — VL) /I

VS = напряжениепитания VL= прямоенапряжение, расчётное для каждого типа диодов (как правилоот 2 до4волт) I = ток светодиода (например20мA), это должно быть меньше максимально допустимого для Вашегодиода Если размер сопротивления не получается подобрать точно, тогдавозьмите резистор большего номинала. На самом деле вы вряд-ли заметитеразницу… совсем яркость свечения уменьшится совсемнезначительно. Например: Если напряжение питания V S = 9 В,и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,

R = (-9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартноезначение, которые больше).

Вычисление светодиодного резистора с использованием ЗаконОма Закон Ома гласит, что сопротивление резистора R = V / I,где: V = напряжение через резистор (V = S — V L в данном случае) I = ток через резистор

Итак R = (VS — VL) /I

Последовательное подключениесветодиодов. Если вы хотите подключить несколько светодиодовсразу – это можно сделать последовательно. Это сокращает потребление энергии ипозволяет подключать большое количество диодов одновременно, например в качествекакой-то гирлянды.

Все светодиоды, которые соединены последовательно,долдны быть одного типа. Блок питания должен иметь достаточную мощностьи обеспечить соответствующее напряжение.

Пример расчета:

Красный, желтый изеленый диоды — при последовательном соединении необходимо напряжениепитания — не менее 8V, так 9-вольтовая батарея будет практически идеальнымисточником.

VL = 2V+ 2V + 2V = 6V (три диода, их напряжения суммируются). Еслинапряжение питания V S 9 В и ток диода = 0.015A,

Резистором R = (V S — V L) / I = (9 — 6)/0,015 = 200 Ом

Берём резистор 220 Ом (ближайшегостандартного значения, которое больше).

Избегайте подключения светодиодов впараллели!
Подключение несколько светодиодов в параллелис помощью одного резистора не очень хорошая идея…

Как правило, светодиоды имеют разброс параметров,требуют несколько различные напряжения каждый.., что делает такое подключениепрактически нерабочим. Один из диодов будет светиться ярче и брать на себя токабольше, пока не выйдет из строя. Такое подключение многократно ускоряетестественную деградацию кристалла светодиода. Если светодиоды соединяютсяпараллельно, каждый из них должен иметь свой собственный ограничительныйрезистор.

Мигающие светодиоды
Мигающиесветодиоды выглядят как обычные светодиоды, они могут мигать самостоятельнопотому, что содержат встроенную интегральную схему. Светодиод мигает нанизких частотах, как правило 2-3 вспышки в секунду. Такие безделушкиделают для автомобильных сигнализаций, разнообразных индикаторов или детскихигрушек.

Цифробуквенные светодиодные индикаторы
Светодиодные цифробуквенные индикаторы сейчас применяютсяочень редко, они сложнее и дороже жидкокристаллических. Раньше, это былопрактически единственным и самым продвинутым средством индикации, их ставилидаже на сотовые телефоны:)

Результатом расчета будут точное значение номинала резистора и близкое к нему типовое значение заводского номинала резистора.
Светодиоды по праву заслужили признание автолюбителей, ведь они дают мощный световой поток при мизерном потреблении (в сравнении с обычными автомобильными лампами накала), а так же предоставляют широкий выбор цвета свечения и габаритов.

Часто, любители в процессе переделки сгоревших ламп накаливания в светодиодные, сталкиваются с вопросом: как подключить светодиод к бортовой сети автомобиля (у легкового 12 Вольт, у грузового 24 Вольта) или мотоцикла (6-12 Вольт)? Ведь подключив напрямую вы сразу его спалите. В этой статье я расскажу как правильно подключать один или несколько светодиодов к источнику питания.

Вы узнаете для чего светодиоду нужен резистор и сможете рассчитать его значение при помощи нашего онлайн калькулятора.

Как правильно подключить светодиод к бортовой сети

Для правильной работы светодиода необходимо ограничить ток протекающий через него. Для этого, к бортовой сети светодиод подключается последовательно с токоограничивающим резистором. Необходимость в ограничении тока обосновывается зависимостью срока службы светодиода от проходящего тока, чем он выше тем меньше срок службы. Но следует отметить, что зависимость эта нелинейная и при превышении определенного рекомендованного порога (смотрите Datasheet на вашу модель) диод выходит из строя.

На рисунке приведены несколько вариантов включения светодиодов с резисторами а так же указаны какие из включений являются оптимальными, какие правильными но менее оптимальными в плане энергопотребления, а какое неправильное и приведет к значительному сокращению срока службы светодиодов. С вариантом схемы включения определились, теперь предстоит выяснить какой резистор нужен для светодиода.

Онлайн калькулятор: “Расчет резистора для светодиода”

Формула для расчета резистора выглядит следующим образом: R= (Uпит – (Uпр.св* N))/I
Где: Uпит- напряжение источника питания Uпр.св- прямое напряжение на светодиоде, N-количество светодиодов, I- ток проходящий через светодиод. Естественно возникает вопрос где взять эти данные? Для тех кто решил махнуть рукой т.к. не знает ничего о названии и происхождении добытых диодов,- скажу не спешите, чуть ниже будет дано универсальное решение вашего вопроса.

Читайте также  Инфракрасный светодиод 12 вольт

Давайте рассмотрим в качестве примера Datasheet на 3 миллиметровый светодиод фирмы kingbright
На рисунке ниже скриншот с указанием характеристик светодиода при силе тока проходящего через него 2 мА при температуре 25С. Из всех представленных характеристик нас интересует лишь Forward Voltage – прямое напряжение на светодиоде.

  • мощности
  • импульсного тока
  • прямого постоянного тока (DC Forward Current) именно это значение нас и интересует, в данном случае нельзя допускать прохождение тока выше 25 миллиампер (при температуре 25 градусов по Цельсию).

Последний рисунок иллюстрирует зависимость характеристик от условий использования:

  • зависимость прямого напряжения от проходящего тока
  • зависимость интенсивности светового потока от проходящего тока
  • зависимость проходящего тока от температуры
  • зависимость интенсивности светового потока от от температуры

Исходя из полученных в Datasheet данных можно сделать вывод, что оптимальным является значение проходящего тока от 2 до 10 миллиампер, при этом типовое значение прямого напряжение на выводах светодиода составляет от 1,9 до 2 Вольт.

Пример расчета №1 Если ввести в онлайн калькулятор напряжение бортовой сети 12 (В), значение тока 2 (мА), значение прямого напряжения 1,9 (В) количество светодиодов 1 получим расчетное значение резистора = 5050 Ом Ближайший производственный номинал резистора 5100 Ом или 5,1 кОм маркировка отечественных резисторов 5к1 маркировка smd резистора 512

Пример расчета №2 Если ввести в калькулятор напряжение бортовой сети грузовика 24 (В), значение тока 10 (мА) светим по полной:), значение прямого напряжения 2 (В) количество светодиодов 3 (маленькая гирлянда получилась) расчетное значение резистора = 1800 Ом Ближайший производственный номинал резистора 1800 Ом или 1,8 кОм маркировка отечественных резисторов 1к8 маркировка smd резистора 182

Рекомендации по подключению светодиодов с неизвестными характеристиками:

Источник: https://levevg.ru/calculation-of-the-circuit-for-connecting-leds-calculator-of-calculation-of-resistance-for-lightemitting-diodes/

Расчёт резистора для светодиода: формулы подбора сопротивления, онлайн-калькулятор

Расчет токоограничивающего резистора для светодиода

Работа светодиода основана на излучении квантов света, возникающих при протекании по нему тока. В зависимости от этого меняется и яркость свечения элемента. При малом токе он светит тускло, а при большом — вспыхивает и сгорает. Для ограничения протекающего через него тока проще всего использовать сопротивление. Выполнить правильный расчёт резистора несложно, но при этом следует помнить, что он только ограничивает, но не стабилизирует ток.

Светодиод — это прибор, обладающий способностью излучать свет. На печатных платах и схемах он обозначается латинскими буквами LED (Light Emitting Diode), что в переводе обозначает «светоизлучающий диод». Физически он представляет собой кристалл, помещённый в корпус. Классически им считается цилиндр, одна сторона которого имеет выпуклую округлую форму, являющуюся линзой-полусферой, а другая — плоское основание, и на ней располагаются выводы.

С развитием твердотельных технологий и уменьшения технологического процесса промышленность стала производить SMD-диоды, предназначенные для установки поверхностным монтажом. Несмотря на это, физический принцип работы светодиода не изменился и одинаков как для любого вида, так и для цвета устройства.

Процесс изготовления прибора излучения можно описать следующим образом. На первом этапе выращивают кристалл. Происходит это путём помещения искусственно изготовленного сапфира в заполненную газообразной смесью камеру.

В состав этого газа входят легирующие добавки и полупроводник. При нагреве камеры происходит осаждение образующегося вещества на пластину, при этом толщина такого слоя не превышает нескольких микрон.

После окончания процесса осаждения методом напыления формируются контактные площадки и вся эта конструкция помещается в корпус.

Из-за особенностей производства одинаковых по параметрам и характеристикам светодиодов не бывает. Поэтому хотя производители и стараются отсортировывать близкие по значениям устройства, нередко в одной партии попадаются изделия, отличающиеся по цветовой температуре и рабочему току.

Устройство радиоэлемента

Светодиод или LED-диод представляет собой полупроводниковый радиоэлемент, в основе работы которого лежат свойства электронно-дырочного перехода. При прохождении через него тока в прямом направлении на границе соприкосновения двух материалов возникают процессы рекомбинации, сопровождающиеся излучением в видимом спектре.

Очень долго промышленность не могла изготовить синий светодиод, из-за чего нельзя было получить и излучатель белого свечения. Лишь только в 1990 году исследователи японской корпорации Nichia Chemical Industries изобрели технологию получения кристалла, излучающего свет в синем спектре. Это автоматически позволило путём смешения зелёного, красного и синего цвета получить белый.

В основе процесса излучение лежит освобождение энергии при рекомбинации зарядов в зоне электронно-дырочного перехода. Образовывается он путём контакта двух полупроводниковых материалов с разной проводимостью. В результате инжекции, перехода неосновных носителей заряда, образуется запирающий слой.

На стороне материала с n-проводимостью возникает барьер из дырок, а на стороне с p-проводимостью — из электронов. Наступает равновесие. При подаче напряжения в прямом смещении происходит массовое перемещение зарядов в запрещённую зону с обеих сторон. В результате они сталкиваются и выделяется энергия в виде излучения света.

Этот свет может быть как видимым человеческому глазу, так и нет. Зависит это от состава полупроводника, количества примесей, ширины запрещённой зоны. Поэтому видимый спектр достигается путём изготовления многослойных полупроводниковых структур.

Характеристики светодиодов

Цвет свечения зависит от типа полупроводника и степени его легирования, что определяет ширину запрещённой зоны p-n перехода. Срок службы светодиодов в первую очередь зависит от температурных режимов его работы. Чем выше нагрев прибора, тем быстрее наступает его старение.

А температура, в свою очередь, связана с проходящей через светодиод силой тока. Чем меньшей мощности источник света, тем дольше его срок службы. Старение выражается в виде уменьшения яркости прибора света. Поэтому так важно правильно подобрать сопротивление для светодиода.

К основным характеристикам LED-диодов относят:

  1. Потребление тока. Однокристальные светодиоды потребляют ток, равный 0,02 А. При этом прямо пропорционально с количеством кристаллов растёт и его значение. Так, диод с четырьмя кристаллами потребляет ток 0,08 А. Именно из-за этого параметра диода и ставится ограничительный резистор, чтобы он не сгорел при высокой силе тока.
  2. Величину падения напряжения. Эта характеристика указывает, какое количество энергии выделяется на светодиоде, то есть на сколько вольт уменьшится величина напряжения при параллельном его включении в цепь. Например, если падение составляет 3 вольта, а величина разности потенциалов на входе равна 9 вольтам, то при включении параллельно к источнику питания светодиода напряжение на выходе будет равно 6 вольтам.
  3. Светоотдачу. Эта характеристика показывает количество света, излучаемое устройством при потреблении мощности равной одному ватту.
  4. Цветовую температуру. Она зависит от управляющего тока, эффективности теплоотвода и температуры окружающей среды. Интенсивный поток света, связанный с потребляемой электрической мощностью, также увеличивает температуру. При этом следует отметить, что перепады температуры значительно снижают ресурс светодиода.
  5. Типоразмер. Его значение зависит от размера излучателя. Соответственно, чем больше размер светодиода, тем больше его яркость и мощность.

Способы подключения

Для беспроблемной работы светодиода очень важно значение рабочего тока. Неверное подключение источников излучения или существенный разброс их параметров при совместной работе приведёт к превышению протекающего через них тока и дальнейшему перегоранию приборов. Связано это с увеличением температуры, из-за которой кристалл светодиода просто деформируется, а p-n переход пробьётся. Поэтому так важно ограничить подающуюся на источник света величину тока, то есть ограничить питающее напряжение.

Проще всего это выполнить, используя сопротивление, включённое последовательно в цепь излучателя. В этом качестве применяется обыкновенный резистор, но он должен иметь определённую величину. Его большое значение не сможет обеспечить нужную разность потенциалов для возникновения процесса рекомбинации, а меньшее — спалит. При этом нужно не только знать, как рассчитать сопротивление для светодиода, но и понимать, как правильно его поставить, особенно если схема насыщена радиоэлементами.

В электрической цепи может использоваться как один светодиод, так и несколько. При этом существует три схемы их включения:

  • одиночная;
  • последовательная;
  • параллельная.

Одиночный элемент

Когда в электрической цепи используется только один светодиод, то последовательно с ним ставится одни резистор. В результате такого подключения общее напряжение, приложенное к этому контуру, будет равно сумме падений разности потенциалов на каждом элементе цепи. Если обозначить эти потери на резисторе как Ur, а на светодиоде Us, то общее напряжение источника ЭДС будет равно: Uo = Ur + Us.

Перефразируя закон Ома для участка сети I = U / R, получается формула: U = I * R. Подставив полученное выражение в формулу для нахождения общего напряжения, получим:

Uo = IrRr + IsRs, где

  • Ir — ток, протекающий через резистор, А.
  • Rr — расчётное сопротивление резистора, Ом.
  • Is — ток, проходящий через светодиод, А.
  • Rs — внутренний импеданс светодиода, Ом.
Читайте также  Последовательная пайка светодиодов

Значение Rs изменяется в зависимости от условий работы источника излучения и его величина зависит от силы тока и разности потенциалов. Эту зависимость можно увидеть изучая вольт-амперную характеристику диода. На начальном этапе происходит плавное увеличение тока, а Rs имеет высокое значение. После импеданс резко падает и ток стремительно возрастает даже при незначительном росте напряжения.

Если соединить формулы, получится следующее выражение:

Rr = (Uo — Us) / Io, Ом

При этом учитывается, что сила тока, протекающего в последовательном контуре участка цепи, одинакова в любой его точке, то есть Io = Ir = Is. Это выражение подходит и для последовательного соединения светодиодов, ведь при нём для всей цепи используется также лишь один резистор.

Таким образом, для нахождения нужного сопротивления остаётся узнать величину Us. Значение падения напряжения на светодиоде является справочной величиной и для каждого радиоэлемента она своя. Для получения данных понадобится воспользоваться даташитом на устройство. Даташит — это набор информационных листов, которые содержат исчерпывающие сведения о параметрах, режимах эксплуатации, а также схемы включения радиоэлемента. Выпускает его производитель изделия.

Параллельная цепь

При параллельном соединение радиоэлементы контактируют между собой в двух точках — узлах. Для такого типа цепи справедливы два правила: сила тока, входящая в узел, равна сумме сил токов, исходящих из узла, и разность потенциалов во всех точках узлов одинакова. Исходя из этих определений, можно сделать заключение, что в случае параллельного соединения светодиодов искомый резистор, располагающийся в начале узла, находится по формуле: Rr = Uo / Is1+In, Ом, где:

  • Uo — приложенная к узлам разность потенциалов.
  • Is1 — сила тока, протекающая через первый светодиод.
  • In — ток, проходящий через n-й светодиод.

Но такая схема с общим сопротивлением, располагающимся перед параллельным соединением светодиодов, — не используется. Связанно это с тем, что в случае перегорания одного излучателя, согласно закону, сила тока, входящая в узел, останется неизменной. А это значит, она распределится между оставшимися рабочими элементами и при этом через них пойдёт больший ток. В результате возникнет цепная реакция и все полупроводниковые излучатели в конечном счёте сгорят.

Поэтому правильно будет использовать собственный резистор для каждой параллельной ветки со своим светодиодом и выполнить расчёт резистора для светодиода отдельно для каждого плеча. Такой подход ещё выгоден тем, что в схеме можно использовать радиоэлементы с разными характеристиками.

Расчёт сопротивления каждого плеча происходит аналогично одиночному включению: Rn = (Uo — Us) / In, Ом, где:

  • Rn — искомое сопротивление n -ой ветки.
  • Uo — Us — разность падений напряжений.
  • In — сила тока через n-й светодиод.

Пример расчёта

Пускай на электрическую схему поступает питание от источника постоянного напряжения, равного 32 вольтам. В этой схеме стоят два параллельно включённых друг другу светодиода марки: Cree C503B-RAS и Cree XM—L T6. Для расчёта требуемого импеданса понадобится узнать из даташита типовое значение падения напряжения на этих светодиодах. Так, для первого оно составляет 2.1 В при токе 0,2, а второго — 2,9 В при той же величине силы тока.

Подставив данные значения в формулу для последовательной цепи, получится следующий результат:

  • R1 =(U0-Us1)/ I=(32−2,1)/0,2 = 21,5 Ом.
  • R2 = (U0-Us2)/ I=(32−2,9)/0,2 = 17,5 Ом.

Из стандартного ряда подбирают ближайшие значения. Ими будут: R1 = 22 Ома и R2 = 18 Ом. При желании можно рассчитать и мощность, рассеиваемую на резисторах по формуле: P = I*I*U. Для найденных резисторов она составит P= 0,001 Вт.

Браузерные онлайн-калькуляторы

При большом количестве светодиодов в схеме рассчитывать для каждого сопротивление — процесс довольно утомительный, тем более что при этом можно допустить ошибку. Поэтому проще всего для расчётов использовать онлайн-калькуляторы.

Представляют они собой программу, написанную для работы в браузере. В интернете можно встретить много таких калькуляторов для светодиодов, но принцип работы у них одинаков. Понадобится ввести справочные данные в предложенных формах, выбрать схему подключения и нажать кнопку «Результат» или «Расчёт». После чего останется только дождаться ответа.

Пересчитав вручную, его можно проверить, но особого смысла в этом не будет, так как при вычислении программы используют аналогичные формулы.

Источник: https://220v.guru/vse-ob-elektroenergii/svetodiodnoe-osveschenie/kalkulyator-rascheta-soprotivleniya-rezistora-dlya-svetodioda.html

Как рассчитать резистор для светодиода?

Расчет токоограничивающего резистора для светодиода

» Uncategorized » Как рассчитать резистор для светодиода?

Светодиодное освещение прочно вошло в нашу жизнь. Основные достоинства – низкое энергопотребление, высокая яркость, минимальные размеры. Светодиод представляет собой полупроводниковый элемент с электронно-дырочной проводимостью.

При пропускании через него электрического тока в прямом направлении он создает оптическое излучение в узком диапазоне. Собственное низкое сопротивление и чувствительность к величине силы тока, является основной причиной того что при включении данного элемента в электрическую цепь необходимо использовать токоограничивающий резистор.

Как рассчитать и правильно подобрать данную деталь для конкретных условий применения рассмотрим более подробно.

Расчет токоограничивающего резистора для светодиода

В интернете можно встретить множество калькуляторов с помощью которого можно рассчитать необходимое сопротивление резистора для эффективной и длительной работы любого светодиода. Но не всегда компьютер может быть под рукой, а токоограничивающий резистор необходимо установить именно в данный момент. Вот для этого и нужно знание элементарных правил.

Светодиоды, как и все элементы могут быть включены в цепь параллельно или последовательно. Первый вариант не является надежным в принципе.

Суть в следующем: при таком виде включения, напряжение на светодиодах будет одинаковым, но так как практически невозможно подобрать полупроводниковые приборы с идеальными идентичными характеристиками, сила тока на светодиодах может оказаться разной по величине.

Один будет светить вполнакала, а второй может работать при удвоенной нагрузке и быстро выйдет из строя. Данное неудобство исключено при последовательном включении светодиодов (или его одиночной установке).

Подбор резистора для светодиода необходимо начинать с выяснения характеристик самого светодиода, а именно значение падения напряжения на светодиоде (U св) и номинальный ток (I св) при нормальной работе. Эти данные можно найти в соответствующей сопроводительной документации или в специальных каталогах. Также необходимо будет знать напряжение источника питания (U).

Расчет сопротивления (R) токоограничивающего резистора для конкретного светодиода производится по формуле: R = (U– Uсв)/ Iсв, что собственно следует из закона Ома.

Рассмотрим наглядно какой резистор нужен для светодиода КИПД06А-1К при напряжении источника питания 220 В. Из соответствующих справочников выясняем, что номинальный ток (I св) для данного источника света составляет 25 мА, а падение напряжения (U св) при этом равно 5,5 В.

Используя вышеприведенную формулу можем рассчитать сопротивление резистора (R) для обеспечения нормальной работы данного светодиода.

R = 220-5,5/0,025 = 8580 Ом = 8,58 кОм.

Далее, после получения необходимой величины сопротивления в омах, переходим к непосредственно к подбору резистора для светодиода соответствующей марки. Возвращаясь к параллельному соединению светодиодов нужно уточнить, что оно возможно, если в дополнение к каждому источнику света будет идти собственный токоограничивающий резистор.

Подбор токоограничивающего резистора для светодиода

После того как необходимое сопротивление резистора было вычислено, необходимо определиться с выбором соответствующей детали. Здесь могут возникнуть некоторые сложности. Дело в том, что не всегда можно подобрать резистор для светодиода, полностью соответствующий по вычисленным параметрам.

Проблема решается двумя способами:

Первый способ

Необходимо подобрать резистор для светодиода, сопротивление которого будет выше необходимого. При этом не стоит сильно завышать этот параметр. Дело в том, что при увеличении сопротивления, будет теряться световая мощность источника, т.е. он будет менее ярким, но при этом прослужит значительно дольше. Оптимальным является превышение необходимого значение в пределах 20-30%.

Второй способ

Второй способ основан на законе Ома, согласно которому при последовательном соединении резисторов их собственное сопротивление суммируется.

Таким образом, при невозможности подбора для светодиода токоограничивающего резистора сопротивлением 8,58 кОм (как в нашем случае), можно взять несколько деталей с необходимыми параметрами.

Это в принципе является оптимальным вариантом, вследствие более точного результата. Естественно ограничением будет являться сама возможность установки нескольких резисторов в электрической цепи.

Также при подборе резистора необходимо обращать внимание на его мощность. Это обусловлено тем, что при работе выделяется тепло и при недостаточной мощности данная деталь может просто перегореть. Это в свою очередь приведет к разрыву цепи и отключению светодиодных источников света.

Источник: https://vse-elektrichestvo.ru/uncategorized/kak-rasschitat-rezistor-dlya-svetodioda.html