Прибор для тестирования конденсаторов

Содержание

Прибор для проверки электролитических конденсаторов

Прибор для тестирования конденсаторов

Мастера, ремонтирующие радиоаппаратуру, хорошо знают, как часто в отказе аппаратуры виноват электролитический конденсатор. Причем неисправность конденсатора заключается не в потере емкости, а в увеличении активного паразитного сопротивления и обычный измеритель емкости не позволяет выявить такую неисправность.

  Эта статья знакомит с несложным и недорогим прибором, позволяющим достаточно достоверно проверить качество электролитических конденсаторов без их демонтажа.

Прибор можно самостоятельно собрать из деталей предлагаемого набора Он позволяет измерять ESR — «последовательное эквивалентное сопротивление» конденсаторов (ESR — Equivalent Series Resistance).

Дополнительно прибор позволяет измерять сопротивление низкоомных резисторов, контактных сопротивлений реле и переключателей. Прибор имеет два диапазона измерений: 1:1 и 1:10. Выбор диапазона осуществляется переключателем.

 Немного информации для радиолюбителей, начинающих заниматься ремонтом радиоаппаратуры. Существует обширный класс неисправностей радиоэлектронной аппаратуры, связанный с отказами электролитических конденсаторов. Электролитические конденсаторы — это сложные электрохимические устройства, содержащие жидкий активный электролит, в них применяется точечная сварка и клепка химически несовместимых металлов.

Изготовление электролитических конденсаторов требует строгого соблюдения технологической дисциплины, так как малейшее ее нарушение ведет к отказам компонентов Причем коварство этих отказов заключается в том, что их часто невозможно обнаружить при входном контроле, они проявляются в процессе эксплуатации радиоаппаратуры.

А так как электролитические конденсаторы используются чаще всего как фильтры питания и переходные конденсаторы, происходит постепенное ухудшение качества работы аппаратуры. Увеличивается количество помех на экране телевизора, усилители начинают все больше «фонить», звук в них постепенно теряет басы, а управляющие микроконтроллеры все чаще начинают давать сбои.

Потребители обычно такие дефекты даже не относят к поломкам, а считают это результатом старения аппаратуры. Но даже когда отказ конденсатора привел к полной неработоспособности устройства, замена отказавшего конденсатора не гарантирует качественного ремонта. Ведь велика вероятность того, что и другие конденсаторы в устройстве уже находятся на грани отказа, и это приведет к повторным ремонтам.

По этой причине некоторые мастера предпочитают в случае отказа одного из электролитических конденсаторов заменять на плате все конденсаторы на новые. Способ конечно надежный, но весьма трудоемкий и дорогостоящий. Имея же прибор для внутрисхемной диагностики электролитических конденсаторов, можно быстро проверить все конденсаторы и заменить только низкокачественные.

 Диагностика электролитических конденсаторов основывается на принципе: «сопротивление конденсатора должно быть бесконечно большим на постоянном токе и предельно малым на высокой частоте». Сопротивление конденсатора на постоянном токе легко проверить при помощи омметра, работающего на постоянном токе. Для проверки сопротивления конденсаторов на высокой частоте существуют специальные приборы — измерители последовательного эквивалентного сопротивления (ESR).

Известные приборы с цифровой индикацией имеют высокую стоимость. Цифровая индикация, необходимая при точных измерениях, оказывается неудобной для быстрых качественных оценок. К тому же конструкция щупов, несмотря на использование цифровой коррекции, не позволяет проводить правильные измерения озчень малых сопротивлений.

Это связано с тем, что приборы измеряет модуль комплексного сопротивления цепи между своими клеммами, но она состоит из суммы сопротивления щупов и сопротивления Тестируемого конденсатора. Теоретически можно вычесть сопротивление щупов из суммарного сопротивления цепи и получить точное знамение сопротивления конденсатора.

Но на практике комплексное сопротивление щупов в процессе измерений меняется из-за нестабильности контакта в клеммах прибора, изменения индуктивности прово-дов при изменении их взаимного расположения и влияния на них окружающих предметов. Все это не позволяет правильно оценивать сверхмалые сопротивления.

Описание прибора

 Прибор, который можно собрать из набора, работает на принципе тестирования конденсатора переменным током фиксированной величины. В этом случае падение напряжения на конденсаторе прямо пропорционально модулю его комплексного сопротивления.

Такой прибор реагирует не только на увеличенное внутреннее сопротивление, но и на потерю конденсатором емкости.

Функционально прибор состоит из трех основных узлов: генератора прямоугольных импульсов, прецизионного преобразователя переменного напряжения в постоянное напряжение и блока индикации {Рис. 3).

 Генератор прямоугольных импульсов выполнен на логической интегральной схеме DA1. состоящей из шести логических элементов НЕ. Преобразователь переменного напряжения в постоянное напряжение выполнен на специализированной интегральной микросхеме DA2. Микросхема имеет широкий диапазон линейного преобразования переменного в постоянное напряжение (40 дБ).

Блок индикации выполнен на микросхеме специализированного усилителя индикации DA3. В приборе использован аналоговый индикатор на 10 светодиодах с логарифмической шкалой. Шкала измерителя нелинейная. Она сжата в области больших сопротивлений и растянута в области малых сопротивлений. Такая шкала удобна для считывания показаний и обеспечивает наглядный отсчет в широком диапазоне измерений.

Для дополнительного расширения диапазона измерений в прибор введен переключатель диапазонов.

 Другая особенность прибора — это использование четырехпроводной схемы подключения измерительных щупов. При такой схеме к измеряемому конденсатору двумя проводами подводится сигнал от генератора, а двумя другими проводами к тому же конденсатору подключается измерительная цепь. Между собой эти две пары проводов соединяются только на конденсаторе. При такой схеме подключения сопротивление соединительных проводов не влияет на результаты изменений, что позволило надежно регистрировать сопротивления порядка 0,05 Ом.

Основные технические характеристики прибора демонстрируют возможности его применения.

Технические характеристики

Напряжение питания [В]……………………………………………………….6 (4 элемента AAA)

Ток потребления, не более [мА]……………………………………………. 100

Щиапазон измерения малых сопротивлений [Ом]………………………0.1—3

Диапазон измерения больших сопротивлений [Ом]……………………1.0—30

Индикация…………………………………………………………………………10 светодиодов

Формат индикации…………………………………«светящийся столб»/«бегущая точка»

Габаритные размеры корпуса [мм]…………………………………………120x70x20

Принцип действия

 Прибор выполнен в корпусе BOX-G080 (Рис. 1). В корпусе закреплена печатная плата и кассета на 4 батареи размера AAA (Рис. 2).

 Принцип действия прибора заключается в следующем. На делитель напряжения, образованный образцовым резистором и проверяемым конденсатором, подается переменное напряжение с генератора прямоугольных импульсов. Конденсатор включен в нижнее плечо делителя.

С выхода делителя переменное напряжение пропорциональное ESR измеряемого конденсатора поступает на вход преобразователя переменного напряжения в постоянное напряжение.

С выхода преобразователя постоянное напряжение поступает на блок индикации, который преобразует поступившее на его вход постоянное напряжение в соответствующее ему количество светящихся светодиодов. Таким образом, измеряемое значение ESR в приборе преобразуется в количество «горящих» светодиодов.

 Рассмотрим электрическую схему устройства. На микросхеме DA1 (HEF4049BP) выполнен генератор прямоугольных импульсов, частота которого определяется элементами времязадающей цепи Rl, C1 (- 80 кГц). С выхода генератора (выводы 2, 4, 6, 11, 15 DA1) прямоугольные импульсы поступают на конденсатор СЗ и далее на делитель напряжения, образованный резистором R3/R2 и испытуемым конденсатором С.

Переключатель SW1 позволяет в качестве верхнего плеча делителя выбрать резистор R3 или R2. Так как значения измеряемых сопротивлений много меньше номиналов токоограничивающих резисторов, можно считать, что конденсатор тестируется фиксированным током.

Напряжение на конденсаторе будет определяться его емкостным сопротивлением и ESR, то есть будет прямо пропорционально его комплексному сопротивлению.

Переменное напряжение с испытуемого конденсатора через конденсатор С4 поступает на вход (вывод 5 DA2) микросхемы преобразователя КР157ДА1. Микросхема представляет собой сдвоенный линейный детектор с динамическим диапазоном более 50 дБ. Здесь эта микросхема использована в нестандартном включении.

Одна ее половина включена в режиме линейного усилителя переменного тока с коэффициентом усиления около 10, а другая в режиме линейного детектора. Такое включение позволило увеличить чувствительность прибора без увеличения постоянного смещения на выходе детектора. Микросхема с высокой точностью преобразует переменное напряжение на ее входе в пропорциональное ему постоянное напряжение на ее выходе.

Поскольку входное напряжение, снимаемое с конденсатора С, пропорционально измеряемому значению ESR, напряжение на выходе преобразователя будет также пропорционально ESR.

 С выхода преобразователя (вывод 12 DA2), постоянное напряжение поступает на сглаживающий фильтр R9, С7 и далее на вход логарифмического индикатора на микросхеме LM3915 (вывод 5 DA3). Значения сигнала с шагом 3 дБ отображаются линейкой из 10 светодиодов.

Использование логарифмического индикатора позволило обеспечить широкий диапазон измеряемых значений при относительно небольшом числе светодиодов индикации. Особенностью включения микросхемы является то, что опорное напряжение на вывод 6 микросхемы подается не от внутреннего стабилизатора, а с делителя R10, R12, подключенного непосредственно к шине питания.

При таком включении при снижении напряжения питания повышается чувствительность индикатора. Одновременно при этом снижается выходное напряжение генератора на микросхеме DA1. Оба эти эффекта компенсируют друг друга, и поэтому удается обеспечить правильные показания прибора при изменении напряжения питания без использования дополнительных стабилизаторов.

Яркость свечения светодиодов индикатора задается резистором R11. Итак, микросхема DA3 преобразовала входное постоянное напряжение в соответствующее количество светящихся светодиодов, подключенных к ее выходам. Суммарный потребляемый прибором ток определяется главным образом током «потребления светодиодов индикации. На плате предусмотрена съемная перемычка J1, определяющая режим работы индикатора.

При установленной перемычке индикатор работает в режиме «светящийся столб», а при снятой — в более экономичном режиме «бегущая точка», при котором снижается ток потребления прибора. Последний режим будет полезен при питании прибора от батарей.

 Диоды D1 и D2 предназначены для защиты прибора при подключении его к неразряженным конденсаторам. С той же целью рекомендуется использовать конденсаторы СЗ и С4 на рабочее напряжение не менее 250 В.

Монтаж и настройка

 Приборы подобного вида являются достаточно сложными радиоэлектронными устройствами. Однако используя элементы из набора NM8032 (Табл. 1), можно собрать устройство всего за 30…40 мин. В наборе имеется все, что нужно для сборки прибора, включая подробную инструкцию, печатную плату, корпус и даже наклейку на лицевую панель. Расположение элементов на плате показано на Рис. 4.

Рис.4  Расположение элементов

Табл. 1 Перечень элементов         

 Позиция  Характеристика  Наименование и/или примечание  Кол.
 DA1  HEF4049BP  Микросхема  1
 DA2  К157ДА1  Микросхема  1
 DA3  LM3915  Микросхема  1
 D1, D2  1N4148  Диод  2
 HL1…HL6  LED 0 3 мм  Светодиод зеленого свечения  6
 HL7…HL8  LED 0 3 мм  Светодиод желтого свечения  2
 HL9…HL10  LED 0 3 мм  Светодиод красного свечения  2
 SW1, SW2  Переключатель SS-8  2
 R1  20кОм  Красный, черный, оранжевый*
 R2  2кОм  Красный, черный, красный*
 R3  110 Ом  Коричневый, коричневый, коричневый*
 R4, R7, R8  10 кОм  Коричневый, черный, оранжевый*  3
 R5  5.6 кОм  Зеленый, голубой, красный*
 R6  56 кОм  Зеленый, голубой, оранжевый*
 R9  30 кОм  Оранжевый, черный, оранжевый*
 R10  4.7 кОм  Желтый, фиолетовый, красный*
 R11  1.2 кОм  Коричневый, красный, красный*
 R12  3 кОм  Оранжевый, черный, красный*
 С1  330 пФ  331 — маркировка
 С2, СЗ, С4, С6, С7  0.22 мкФ  224 — маркировка
 С5  10 мкФ, 16…50 В
 С8
Читайте также  Прибор для поиска труб в стене

Источник: http://radio-hobby.org/modules/news/article.php?storyid=1039

На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками

Прибор для тестирования конденсаторов

Стрелочные тестеры типа 4353, 43101 и другие в свое время были широко распространены. Приборы имели встроенную защиту и позволяли производить измерения различных электрических параметров, однако отличались громоздкостью, а при измерении емкости конденсаторов были привязаны к сетевому напряжению. При этом тестеры имели неплохие стрелочные измерительные головки, которые можно использовать в конструкции с гораздо меньшими габаритами и большими возможностями.

Так, с использованием этой головки был сделан небольшой настольный аналоговый измерительный прибор с минимальным количеством элементов управления.

Он позволяет с достаточной для радиолюбителя точностью измерять емкость неполярных конденсаторов (5 пФ — 10 мкФ), индуктивность катушек (от единиц мкГн до 1 Гн), емкость электролитических конденсаторов (1 мкФ — 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты (10,100.

1000 Гц, 10,100,10ОО кГц) и, кроме того, в него может быть добавлен встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколевки неизвестных транзисторов. Причем проверить параметры большинства элементов можно, не выпаивая их из схемы.

Модульная конструкция прибора позволяет использовать только необходимые функциональные узлы. Ненужные модули можно легко исключить, а нужные так же легко добавить при желании. Возможность сохранения «родных» функций прибора — измерения напряжений и токов — также имеется. Ну и, конечно, стрелочная измерительная головка может быть любой другой (с током полного отклонения 50 … 200 мкА), это не принципиально.

Далее будут даны схемы и описания отдельных функциональных «модулей» прибора, а затем — структурная схема всего прибора полностью и схема коммутации отдельных его узлов. Все схемы были не раз проверены на практике и показали стабильную и надежную работу, без сложных настроек и использования каких-либо специфических деталей. При необходимости сделать компактный прибор для проверки конкретных компонентов и их параметров каждую такую схему-модуль можно использовать отдельно.

Генератор образцовых частот. Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.

Генератор 1Мгц с делителями частоты

Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, CD4026 или любых других.

С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. С помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту.

Схема питается напряжением 9 В.

Модуль измерения емкости и индуктивности

Модуль измерения L, С. Схема каскада для измерения емкости неполярных конденсаторов и индуктивностей показана на Рисунке 2. Входной сигнал подается непосредственно с выхода переключателя диапазонов измерений (SA1 на Рисунке 1).

Сформированный прямоугольный импульсный сигнал, поступающий на выход «F» через ключевой транзистор VT1, можно использовать для проверки или настройки других устройств. Уровень выходного сигнала можно регулировать резистором R4.

Этот сигнал подается также на измеряемый элемент — конденсатор или индуктивность, подключенные, соответственно, к клеммам «С» или «Ь>, при этом переключатель SA2 устанавливается в соответствующее положение.

К выходу «11изм.» подключается непосредственно измерительная головка (возможно, через добавочное сопротивление; см. ниже «Модуль индикации»). Резистор R5 служит для установки пределов измерений индуктивностей, a R6 — емкостей.

Для калибровки каскада к клеммам «Сх» и «Общий» на диапазоне 1 кГц подключаем образцовый конденсатор 0.1 мкФ (см. схему на Рисунке 1) и подстроечным резистором R6 устанавливаем стрелку прибора на конечное деление шкалы. Затем подключаем конденсаторы, например, емкостью 0.01, 0.022, 0.033, 0.

047, 0.056, 0.068 мкФ и делаем соответствующие метки на шкале.

После чего таким же образом калибруем шкалу индуктивностей, для чего на этом же диапазоне 1 кГц подключаем к клеммам «Lx» и «Общий» образцовую катушку индуктивностью 10 мГн и подстроечным резистором R5 устанавливаем стрелку на конечное деление шкалы. Впрочем, калибровать прибор можно и на любом другом диапазоне (например, при частоте 100 кГц или 100 Гц), подключая в качестве образцовых соответствующие емкости и индуктивности, согласно выбранному диапазону.

Напряжение питания каскада (11пит)-9 В. Модуль измерения электролитических конденсаторов (+С и ESR). Модуль представляет собой микрофарадометр, в котором определение емкости производится косвенным образом путем измерения величины напряжения пульсаций на резисторе R3, которое будет меняться обратно пропорционально емкости периодически перезаряжаемого конденсатора. Можно измерять емкости оксидных (электролитических) конденсаторов в диапазонах 10-100, 100-1000 и 1000-10000 мкФ.

Модуль измерения ESR и емкости электролитических конденсаторов

Измерительный узел для электролитических конденсаторов собран на транзисторе Т1 (Рисунок 3). На вход (R1) подается сигнал непосредственно с выхода генератора- делителя (схема на Рисунке 1), включать который можно параллельно предыдущему модулю. Резистор R1 подбираем в зависимости от типа использованного транзистора Т1 и чувствительности используемой измерительной головки. Резистор R2 ограничивает ток коллектора транзистора в случае короткого замыкания в проверяемом конденсаторе.

В отличие от других модулей, здесь требуется пониженное стабильное питание 1.2 — 1.8 В; схема стабилизатора на такое напряжение будет приведена ниже на Рисунке 6. Следует отметить, что при измерениях полярность подключения конденсатора к клеммам «+Сх» и «Общий» не имеет значения, а измерения можно выполнять, не выпаивая конденсаторы из схемы. Перед началом измерений резистором R4 стрелка устанавливается на нулевую отметку (конец шкалы).

Перед началом измерений (при отсутствии измеряемого конденсатора «+Сх») резистором R4 стрелка устанавливается на нулевую отметку (конечное деление шкалы). Калибровка шкалы «+Сх» может производиться на любом диапазоне. Например, переводим переключатель SA1 в положение, соответствующее частоте 1 кГц. С помощью R4 устанавливаем стрелку прибора на «О» (конец шкалы) и, подключая к клеммам «+Сх» и «Общий» образцовые конденсаторы емкостью 10, 22, 33, 47, 68 и 100 мкФ, делаем соответствующие отметки на шкале.

После этого на других диапазонах (10 Гц и 100 Гц) эти же отметки будут соответствовать емкостям с номиналами в 10 и 100 раз большими, то есть, от 100 до 1000 мкФ (100, 220, 330, 470, 680 мкФ) и от 1000 до 10000 мкФ, соответственно. В качестве образцовых здесь можно использовать танталовые оксидно-полупроводниковые конденсаторы, имеющие наиболее стабильные во времени параметры, например, типов К53-1 или К53-6А.

Узел измерения ESR содержит отдельный генератор 100 кГц, собранный на микросхеме 561ЛА7 (ЛЕ5) по такой же схеме, как и основной генератор на Рисунке 1. Здесь особой стабильности не требуется, и частота может быть любой от 80 до 120 кГц.

От величины последовательного эквивалентного сопротивления подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора (намотан на ферритовом кольце диаметром 15-20 мм). Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать.

Поэтому лучше сначала намотать обмотку II, а первичную — поверх нее. Выпрямленное постоянное напряжение после диода VD5 подается на измерительную головку (модуль индикации на Рисунке 4).

Структурная схема измерителя

Диоды VD3, VD4 ограничивают возможные броски напряжений для защиты стрелочной головки от перегрузки. Здесь полярность подключения конденсатора также не важна, и измерения можно проводить непосредственно в схеме. Пределы измерения можно менять в широких пределах подстроечным резистором R5 — от десятых долей Ома до нескольких Ом. Но при этом следует учитывать влияние сопротивления проводов от клемм «ESR» и «Общий».

Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например, рядом с генератором Рисунок 1), возможен срыв генерации узла на микросхеме. Поэтому узел измерения «ESR» лучше собрать на отдельной небольшой плате и поместить в экран (например, из жести), соединенный с общим проводом.

Для калибровки шкалы «ESR» подключаем к клеммам «ESR» и «Общий» резисторы сопротивлением 0.1,0.2,0.5,1,2.3 Ом и делаем соответствующие отметки на шкале. Чувствительность прибора можно регулировать изменением сопротивления подстроечного резистора R5. Питание измеритель ESR, так же, как и остальные схемы модуля, напряжением 9 В.

Схема соединений модулей прибора

Как видно из Рисунка 4, соединение всех «модулей» не представляет сложности.

Модуль индикации включает в себя измерительную головку, зашунтированную конденсатором (100 … 470 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора.

В зависимости от чувствительности измерительной головки может понадобиться добавочное сопротивление. Следует иметь в виду, что клемма «Общий» на Рисунке 2 (модуль измерения «С» и «1_») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (схема Рисунке 3) при необходимости можно заменить узлом из двух транзисторов меньшей мощности, а в источнике питания 1.4 В можно использовать простой стабилизатор на одном транзисторе. Как это сделать, показано на Рисунках 5 и 6. Функцию стабилитрона здесь выполняют кремниевые диоды VD1-VD3 с суммарным прямым падением напряжения порядка 1.5 В. Включать диоды, в отличие от стабилитрона, нужно в прямом направлении.

При желании можно дополнить прибор модулем для быстрой проверки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причем биполярные транзисторы и, в ряде случаев, полевые, можно проверять без выпаивания их из схемы.

Представленная на Рисунке 7 схема представляет собой комбинацию мультивибратора и триггера, где вместо резисторов нагрузки в коллекторные цепи транзисторов мультивибратора включены транзисторы с идентичными параметрами, но противоположной структуры (VT2, VT3). Резисторы R6, R7 задают необходимое напряжение смещения рабочей точки проверяемого транзистора, a R5 ограничивает ток через светодиоды и определяет яркость их свечения.

Читайте также  Прибор для замера температуры на расстоянии

Рисунок 5. Замена КТ829Г

В зависимости от типа используемых светодиодов, возможно, придется подобрать сопротивление R5, ориентируясь на оптимальную яркость их свечения, или же поставить дополнительный гасящий резистор в цепь питания 9 В. Следует заметить, что эта схема работает с питающим напряжением, начиная от 2 В. Когда к клеммам «Э», «Б»,

«К» ничего не подключено, оба светодиода мигают. Частоту мигания можно подстраивать, меняя емкости конденсаторов С1 и С2. При подключении к клеммам исправного транзистора один из светодиодов погаснет, в зависимости от типа его проводимости — р-n-р или n-р-n. Если транзистор неисправен, оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).

Помимо клемм «Э», «Б», «К» на самом приборе (клеммная колодка, «фрагмент» панельки под микросхемы и прочее), можно параллельно им вывести из корпуса на проводах соответствующие щупы для проверки транзисторов на платах. При испытаниях полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «3», «С».

Рисунок 6. Низковольтный стабилизатор напряжения

Следует учесть, что полевые транзисторы или очень мощные биполярные все-таки лучше проверять, выпаяв из платы. При измерениях номиналов любых элементов непосредственно на плате следует обязательно отключить питание схемы, в которой производятся измерения!

Прибор занимает мало места, умещаясь в корпусе 140x110x40 мм (см. фото справа в начале статьи) и позволяет с достаточной для радиолюбителей точностью проверять практически все основные типы радиокомпонентов, чаще всего используемых на практике. Прибор без нареканий эксплуатируется в течение нескольких лет.

Рисунок 7. Схема для проверки транзисторов

← Подключение сабвуфера к магнитоле Почему печатные платы зеленые →

Источник: http://www.radiochipi.ru/universalnyj-pribor/

Как проверять конденсаторы мультиметром не выпаивая, проверить исправность

Прибор для тестирования конденсаторов

Среди электронных компонентов, наиболее часто встречающихся в рекомендациях по ремонту оборудования наверно более 50% всех случаев поломки случаются из-за неисправности конденсаторов. Как электрический прибор конденсатор участвует во множестве электрических схем. Основа работы такого элемента основана на постепенном накоплении электричества разного потенциала между обкладками и его последующего резкого разряда.

Сегодня наиболее распространенными в схемотехнике являются два вида конденсаторов:

  • электролитические или полярные, называются так, потому что при включении в схему аппаратуры требуют установки согласно полярности: «плюс» к плюсу схемы, а вот «минус» к отрицательному;
  • неполярные все остальные типы конденсаторов.

Конструкция подобного рода электронных компонентов для элементарного представления довольно проста и состоит из двух проводящих электрический ток изолированных диэлектриком обкладок. В качестве диэлектрика используются различные вещества и материалы, не проводящие электрический ток – воздух, керамические пластины, специальная бумага, слюда.

На практике эти электронные компоненты являются небольшими по размерам приборами, но при этом имеют очень большую и довольно чувствительную емкость, поэтому при работе с ними необходимо максимально соблюдать осторожность и внимательность.

Принцип работы

Принцип работы, на котором основана работа этого радиоэлемента заключается в том, что при использовании его в электрических схемах он способен накапливать электрический заряд.

https://www.youtube.com/watch?v=SV8p05pv0os

Это свойство, возможно только с переменным электрическим током – поэтому он применяется в схемах, где необходимо разделение двух составляющих тока – постоянной и переменной. А вот в схемах с постоянным электрическим током конденсатор будет выполнять роль диэлектрика, поскольку в таких условиях он не способен накапливать заряд.

Область применения

Конденсаторы применяются в зависимости от своего номинала и маркировки в различных радиосхемах и электронных приборах. Это в основном небольшие по емкости компоненты, выход их строя которых не сопровождается большими и разрушительными последствиями.

Большие по мощности и размерам конденсаторы применяются в основном в качестве пусковых элементов электродвигателей при использовании однофазного подключения в таком случае конденсаторы должны иметь большую емкость и номинал.

Возможные неисправности

Нерабочая электрическая схема прибора или незапускающийся двигатель сам по себе сигнализирует о неисправности одного или нескольких компонентов схемы, а вот конкретно неисправность конденсатора может быть следствием некоторых факторов, влияющих на работоспособность элемента:

  • короткого замыкания внутри между обкладками;
  • порыва внутренней цепи элемента;
  • превышения допустимого тока утечки;
  • уменьшения номинальной емкости данного прибора;
  • физического повреждения корпуса и нарушения его герметичности.

Как определить поломку по внешним признакам

Вышедший из строя электронный компонент, возможно определить, или во всяком случае поставить под сомнение его работоспособность возможно благодаря следующим внешним признакам:

  • нарушение герметичности корпуса – в виде разрыва внешнего корпуса и выступившего электролита;
  • раздутого корпуса элемента с видными повреждениями геометрии (чаще всего они имеют цилиндрическую форму, поэтому выпуклости на внешней оболочке говорят о его неисправности).

Как проверить конденсатор (пусковой/высоковольтный/пленочный и т.д.) мультиметром

Самым простым и надежным способом проверки неисправного конденсатора является проверка его омметром, или специально собранной проверочной схемы. Омметр покажет сопротивление электронного устройства, по которому можно судить о целостности диэлектрика, и делать выводы об исправности элемента.

Другим, не менее эффективным способом проверки работоспособности конденсатора является тестирование его с помощью комбинированного прибора мультиметра. Мультиметры, а особенно те, которые имеют специальный режим проверки емкости позволяют быстро, точно и достоверно протестировать устройства.

Сам процесс можно описать алгоритмом:

  • измерительный прибор переводится в режим омметра;
  • омметр выставляется в верхний режим измерения сопротивления – бесконечность значения;
  • проводится измерение сопротивления устройства на выводах – в случае если прибор показывает низкое значение сопротивления (любое отличное от значения «бесконечность») то тестируемый элемент непригоден к дальнейшей работе, внутри имеется пробой диэлектрика или утечка электролита.

Небольшое отклонение стрелки на циферблате тестера при проверке подобного типа электронных устройств с последующим возвращением в исходное нулевое положение свидетельствует о том, что конденсатор исправен и начал набирать небольшую емкость.

Отклонение стрелки мультиметра на определенную величину с последующим возвращением и фиксацией на каком-либо значении сопротивления говорит о неисправности элемента.

Как проверить не выпаивая

Одним из вариантов проверки работоспособности конденсаторов без демонтажа их из схемы является включение в схему параллельно испытуемому элементу исправного компонента соответствующего номинала. Такой вариант позволяет судить о работоспособности испытуемого электронного устройства и определить вариант его замены.

Данный метод во многом дает позитивный результат при проверке схем с небольшим напряжением, при проверке элементов работающих схем с высоким рабочим напряжением такой вариант недопустим.

Вообще чаще всего в рабочих устройствах выходят из строя в основном электролитические конденсаторы, реже полиэтилентерефталатные в высоковольтных цепях.

Как узнать ёмкость конденсатора

В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.

В таком случае необходимо использование специализированного мультиметра, имеющего в своем арсенале функцию измерения емкости.

В большинстве мультиметров имеется 5 пределов измерения:

  • 20 нФ (20nF)
  • 200 нФ (200nF)
  • 2 мкФ (2uF)
  • 20 мкФ (20uF)
  • 200 мкФ (200uF)

Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:

  • Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх). Внимание! При работе обязательно соблюдать указанную полярность контрольных щупов!
  • Тестируемый образец полностью разряжается.
  • Контрольные щупы соединяются с местами выводов на тестируемом образце.

Полученное значение и показывает емкость электронного компонента схемы.

В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.

Советы и рекомендации

Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).

Номинал конденсаторов менее чем 0.25мкФ, с помощью обычного мультиметра могут проверяться только на наличие короткого замыкания. Превышение допустимых значений измерения может привести к выходу из строя прибора, и хотя внутри мультиметра и установлен предохранитель, все равно прибор может быть испорчен безвозвратно.

Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.

Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:

  • в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
  • для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В — 100 кОм (25 Вт);
  • для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ — 1 МОм (10 Вт).

Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.

Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.

Источник: https://househill.ru/kommunikacii/electrika/stabilizatory/proverka-kondensatora-multimetrom.html

Прибор для проверки оксидных конденсаторов на ЭПС (ESR) | Мастер Винтик. Всё своими руками!

Прибор для тестирования конденсаторов

Проблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры. Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора.

Многих радиолюбителей, да и про­фессиональных мастеров по ре­монту радио- и телеаппаратуры, на­верняка заинтересовала статья Р. Хафизова «Пробник оксидных конденса­торов» в журнале «Радио» (2003, № 10, с. 21).

Общеизвестный метод проверки с помощью омметра, позво­ляя приблизительно оценить емкость и измерить утечку оксидных конден­саторов, далеко не всегда дает пол­ную информацию об их качестве. Опе­ративная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства.

Осо­бенно это касается наиболее часто используемых конденсаторов емкос­тью от единиц до нескольких десятков микрофарад.

После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 приме­нил, как мне кажется, более распрост­раненную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использо­вал стрелочный индикатор уровня М68501 от магнитофона.

Применение стрелочного индикато­ра позволило сделать прибор более точным, достаточно компактным и бо­лее экономичным. Ток потребления не зависит от режима работы и составля­ет около 1 мА, что дает возможность использовать малогабаритный источ­ник питания — батарею из трех миниа­тюрных дисковых элементов для ла­зерной указки.

Несколько измененная схема при­ведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конден­сатора в пределах от 2 до 50 Ом и ем­кость от 5 до 50 мкФ.

Конструктивно прибор может быть выполнен в виде мини-тестера с вы­носными щупами и выключателем пи­тания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением пита­ния, что существенно увеличит срок службы батареи.

Читайте также  Измерительные приборы инструмент и средства защиты

В данном варианте размеры корпу­са составляют 90 x 45 x 20 мм. Индика­тор расположен с левой стороны попе­рек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней сто­роны. Монтаж элементов прибора вы­полнен на печатной плате, чертеж ко­торой приведен на рис. 2

Детали и замена

Для выбора вида измерений ис­пользован переключатель SA1 с фик­сацией из серии ПКН. Выключатель питания SA2 — миниатюрный движко­вый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.

Вместо указанной на схеме микро­схемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.

Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы — малогабаритные керамические, резис­торы — мощностью 0,125 — 0,25 Вт. Ок­сидный конденсатор — К50-16 или импортный. Диоды VD2—VD5 — любые германиевые высокочастотные. Тип стрелочного индикатора сущест­венного значения не имеет.

Настройка прибора

Налаживание прибора заключается в установке частоты генератора в пре­делах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соот­ветственно С2 и С1, а также в установ­ке стрелки индикатора на конец шкалы в режиме холостого хода подбором ре­зисторов R4, R5, R8. Предварительно резистором R6 выставляют постоян­ное напряжение на коллекторе транзи­стора, примерно равное половине на­пряжения питания.

Градуировка шкалы не составит большого труда, так как пластмассо­вые индикаторы уровня легко вскры­ваются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем на­носят соответствующие риски и над­писи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.

Нелинейность шкалы таких индика­торов играет положительную роль, позволяя несколько расширить диапа­зон измерений. Градуировка шкалы электрической емкости производи­лась путем усреднения замеров не­скольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные не­проволочные резисторы.

После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них при­шлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка.

Этот монитор по­бывал уже у двух мастеров и был воз­вращен назад ввиду «отсутствия элек­трической схемы и сложности ремон­та».

В течение нескольких минут ока­залось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди кото­рых был обнаружен один с завышен­ным значением ЭПС и заниженной емкостью. После его замены монитор заработал!

Автор уверен, что подобный прибор займет достойное место в арсенале измерительных приборов как радиолюбителей, так и профессионалов.

Редактор — А. Соколов, графика — Ю. Андреев

Вид со стороны дорожек

Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)

Вариант внешнего вида прибора

От редакции журнала «Радио». Эквивалентное по­следовательное сопротивление (ЭПС, а в англоязычной терминологии — ESR) конденсатора зависит от многих факто­ров: его типа, емкости, номинального напряжения, частоты, на которой про­водят измерения, и т. д.

Например, ЭПС танталовых конденсаторов для поверх­ностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, нахо­дится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением емкости и номинального напряжения.

У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряже­ние от 6,3 до 160 В ЭПС, также изме­ренное на частоте 100 кГц, увеличива­ется от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки при­годности конденсатора в зависимости от значения ЭПС не существует реше­ние по отбраковке следует принимать в каждом конкретном случае.

Радио №10, 2005г.

  • Доработка цифрового мультиметра М-830 (М-838)
  • Недорогой и простой цифровой мультиметр из серии М-83Х благодаря его широким функциональным возможнос­тям стал одним из  популярных измеритель­ных приборов у радиолюбителей.И при желании его можно ещё доработать. Для этого нужно доба­вить несложное электронное устройство на одной простой и недорогой микросхеме. Этим самым мы еще больше расширим его возможности: он теперь сможет измерять ёмкости конденсаторов, добавится звуковая сигнализация при прозвонке цепей (если такая отсутствует в этой модели), а также добавить  таймер для выключения питания мультиметра, который позволит продлить срок службы батарейке.

    Подробнее…

  • Замена лампочки на светодиод в фонарике
  • Как продлить «жизнь» лампочке? Как отремонтировать лампу накаливания? Как увеличить срок службы фонарику?

    Ответом на эти вопросы будет замена обычной лампы накаливания светодиодом. Одной заменой мы сразу «убьём двух зайцев» — наша новая лампочка будет светить и служить дольше. У светодиодов срок службы больше, а ток потребления меньше.Подробнее…

  • ESR-tester своими руками
  • Прибор для проверки эквивалентного последовательного сопротивления (ЭПС) электролитических конденсаторов

    При ремонте аппаратуры часто появляется необходимость в проверке электролитических конденсаторов. Они наиболее частые виновники поломок.Состояние конденсаторов часто видно визуально: они вздутые, подтёкшие. Но иногда казалось бы на вид хороший конденсатор при проверке оказывается неисправным.Эту задачу поможет решить прибор для проверки ESR или эквивалентного последовательного сопротивления (ЭПС) .Подробнее…

Популярность: 32 020 просм.

Источник: http://www.MasterVintik.ru/pribor-dlya-proverki-oksidnyx-kondensatorov/

Проверка конденсатора мультиметром и измерение ёмкости

Прибор для тестирования конденсаторов

instrument.guru > Измерительные > Проверка конденсатора мультиметром и измерение ёмкости

Современный человек не представляет своей жизни без разнообразных бытовых радиотехнических устройств и приспособлений. Основой таких устройств являются различные схемы, где конденсатор занимает одно из ведущих мест. Из статьи вы узнаете, что это за элемент и как его проверить.

  • Устройство конденсатора
  • Как проверить конденсатор мультиметром не выпаивая?
  • Как проверить конденсатор мультиметром?
  • Как проверить электролитический конденсатор мультиметром
  • Как проверить керамический конденсатор
  • Как измерить ёмкость конденсатора мультиметром?

Устройство конденсатора

Это радиотехнический элемент, который способен накапливать электрическую энергию и отдавать её в сеть, в заданное время. Конструктивно он представляет две металлические пластины разделённые слоем диэлектрика. Параметры его зависят в основном от площади проводника и от толщины и свойств диэлектрика. Чем больше площадь пластин и меньше расстояние между ними, тем больше ёмкость такого элемента.

Пластины изготавливаются изалюминиевойфольги, которая скручена в рулон. Между пластинами помещается изоляция из различных диэлектрических материалов. В зависимости от того, какой диэлектрик используется, конденсаторы бывают:

  • Керамическими.
  • Бумажными.
  • Электролитическими.

От условий применения их подразделяют:

Вам обязательно стоит прочитать о том, для чего нужны пирометры.

Как проверить конденсатор мультиметром не выпаивая?

Перед началом ремонта радиотехнической схемы, необходимо произвести внешний осмотр радиоэлементов, не выпаивая их из платы. Характерными признаками неисправного накопителя энергии является вздутие его корпуса, изменение цвета.

Современные электролитические конденсаторы снабжены специальными щелями, для более безопасного выхода системы из строя. На плате могут появиться признаки температурного воздействия неисправного элемента – токопроводящие дорожки отслаиваются от поверхности, потемнение платы и т. п.

Проверять контакт элемента можно осторожно покачав его пальцем.

Если имеется электрическая схема, можно проконтролировать наличие величины напряжения на контрольных точках. Точнее, нужно произвести измерения по цепи разряда конденсатора и оценить его состояние. При подозрении на неисправность нужно параллельно подозрительному компоненту включить в схему исправный, одинакового номинала, что позволит судить о его работоспособности. Такой вариант определения неисправности приемлем в схемах с малым напряжением.

Как проверить конденсатор мультиметром?

Современная промышленность выпускает большое разнообразие моделей приборов для измерения электрических параметров – мультиметров. Они бывают как с аналоговой стрелочной индикацией, так и с жидкокристаллическим дисплеем. Приборы с ЖК дисплеем дают более точные измерения и удобны в использовании. Стрелочные индикаторы предпочитают из-за более плавного перемещения стрелки.

Перед проверкой накопителей энергии, их необходимо выпаять из схемы, чтобы избежать влияния на показания других радиотехнических элементов.

Конденсаторы разделяют на полярные и неполярные. К полярным относятся все электролитические. Они включаются в электрическую схему строго с соблюдением полярности. К неполярным – все остальные. Неполярные впаиваются в схему без соблюдения полярности.

Как проверить электролитический конденсатор мультиметром

  • Настраиваем прибор на режим измерения сопротивления до 100 Ком.
  • Дотрагиваемся до контактных выводов этого кондера измерительными проводами мультиметра, при это необходимо строго соблюдать полярность.
  • Внимательно контролируем изменение показаний на шкале измерительного прибора.

Оцениваем результат измерения:

  • Если сопротивление начинает расти (происходит заряд) и достигает большого значения, а затем медленно начинает уменьшаться (он разряжается) — элемент исправен.
  • Если сопротивление на шкале мультиметра увеличивается, но нет обратного движения показаний (происходит заряд, но нет разряда) – проводящая пластина находится на обрыве. Такой элемент подлежит замене.
  • Если сопротивление остаётся малым (не происходит заряд измеряемого элемента) – электролит находится в состоянии короткого замыкания. Его необходимо заменить.

Обязательно нужно разряжать электролит перед его проверкой, чтобы не попасть под напряжение. Разрядить его легко, коснувшись одновременно двух контактов электролита любой отвёрткой с изолированной рукояткой.

Как проверить керамический конденсатор

Конденсаторы неполярные (керамические, бумажные и т. п.) проверяются мультиметром немного другим способом:

  • Прибор настраиваем на измерение сопротивления.
  • Выставляем самый максимальный предел измерения.
  • Прикасаемся измерительными проводами к контактам, не касаясь их.

Если в результате этих действий на экране прибора величина сопротивления будет больше 2 Мом. – конденсатор исправен. Если полученное показание сопротивления будет меньше 2 Мом. – элемент неисправен (конденсатор пробит или закорочен). Его необходимо заменить исправным.

Помните, что при измерении на максимальных режимах сопротивления, нужно обязательно исключить касание проводящих частей. Связано это с тем, что сопротивление человеческого тела намного меньше сопротивления конденсатора. Это сопротивление и оказывает большое влияние на точность измерения. Тестер не показывает правильные параметры.

Как измерить ёмкость конденсатора мультиметром?

Проверка путём измерения сопротивления зачастую не даёт возможности гарантированно говорить о том, что кондер работоспособен. Именно измерение ёмкости может дать ответ о полной пригодности этого элемента в радиотехнической схеме. Для проведения таких измерений понадобится более точный прибор для проверки конденсаторов, имеющий специальную функцию для измерения ёмкости.

Принцип измерения ёмкости:

  • Аккуратно зачищаем и выравниваем ножки.
  • На измерительном приборе устанавливаем значение ёмкости, близкое к оригиналу.
  • Вставляем конденсатор в специальные контакты на приборе. Ожидаем зарядки элемента несколько секунд. Когда показания на шкале перестанут изменяться – фиксируем их.

Измерение ёмкости прибором, имеющим специальную функцию, одинаково для накопителей энергии любого типа (полярный, неполярный). Из этой статьи мы узнали, что знание основных навыков для проверки конденсаторов мультиметром дело нужное и не очень сложное. Их легко измерять и прозванивать самостоятельно. О более точных принципах измерения можно узнать из видео в интернете.

Источник: https://instrument.guru/izmeritelnye/proverka-kondensatora-multimetrom-i-izmerenie-yomkosti.html