Прибор для обнаружения кабеля под землей

Содержание

Поиск места повреждения кабеля: 7 лучших методик

Прибор для обнаружения кабеля под землей

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную  к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Поиск повреждений кабеля индукционным методом

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля

В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:

tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.

Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.

Акустический метод

Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.

Различные схемы, применяемые при акустическом методе поиска повреждений кабеля

Обозначения:

  1. Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
  2. Схема для поиска заплывающих пробоев.
  3. Применение работоспособных токопроводящих элементов (задействована емкость жил).
  4. Схема для поиска обрыва.

по теме:

Емкостной метод

Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.

Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля

Обозначения:

  • R1, R2, R3 – регулируемые резисторы.
  • Cэ – эталонный высоковольтный конденсатор.
  • L – расстояние до места обрыва.
  • Lк – общая длина КЛ.
  • 1 – токоведущие элементы кабеля.
  • 2 – защитная оболочка.
  • 3 – место обрыва.

Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2)  .

Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.

Метод колебательного разряда

Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.

Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля

Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.

Метод петли

Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.

Устройство для поиска повреждения кабеля методом петли

Обозначения:

  • Г – гальванометр.
  • R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
  • Lk – длина КЛ.
  • L – расстояние до дефектного участка.
  • 1 – токопроводящие элементы кабеля.
  • 2 – перемычка между целой и дефектной жилой.

После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .

Метод накладной рамки

Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.

Читайте также  Прибор для измерения давления газа в сосуде

Локализация повреждения кабеля методом накладной рамки

Обозначения:

  1. Накладные рамки.
  2. Место пробоя изоляции.

Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя

В быту также найдется применение для методик дефектоскопии кабеля, особенно когда необходимо определить точное место повреждения скрытой проводки. Вскрытие трассы, особенно, когда речь идет о бетонных стенах, допустимо только при общем ремонте. Поэтому наиболее щадящим способом в данном случае будет применение специальных приборов – трассоискателей. Чтобы не повторятся, рекомендуем к прочтению статью https://www.asutpp.ru/iskatel-skrytoj-provodki.html, где подробно рассматривается данная тема.

Источник: https://www.asutpp.ru/opredelenie-mesta-povrezhdeniya-kabelya.html

Поиск бронированного и небронированного оптического кабеля под землей: как избежать ошибок

Прибор для обнаружения кабеля под землей

Поиск подземных оптических волоконных линий связи (ВОЛС) является сложной задачей, если не предусмотреть возможность быстрого и простого обнаружения кабеля или его ключевых точек. Для этого необходимо применить ряд простых и эффективных технологий, без которых ВОЛС может превратиться в «потерянное сокровище».

Рассмотрим особенности поиска подземных ВОЛС подробнее.

Простой вариант: бронированный оптический кабель под землей

Обычно для прокладки ВОЛС используются специальные бронированные оптоволоконные кабели, кабельные каналы и подземные коллекторы. В последнем случае проблемы с поиском оптоволокна нет, лишь необходимо пометить ВОЛС бирками в соответствии с требованиями нормативных документов, которые определяют правила прокладки кабелей, в том числе оптических.

В частности, Свод правил Министерства строительства и жилищно-коммунального хозяйства Российской Федерации «Коллекторы коммуникационные. Правила проектирования и строительства» предполагает установку бирок с нанесением соответствующего диспетчерского наименования, сечения и марки кабельной линии.

Бирки устанавливаются через каждые 10 м на всей протяженности трассы, как и для силовых кабелей.

Подземные коммуникации обязательно картографируются в соответствии с процедурами, предусмотренными действующей Инструкцией по съемке и составлению планов подземных коммуникаций. Без подробной картографической основы с данными о подземных коммуникациях невозможно создать кадастр объектов недвижимости и проводить строительные работы. Поиск коммуникаций может быть неотъемлемой частью кадастровой работы.

Бронированные оптоволоконные кабели и каналы, зарытые в землю, обычно имеют металлические оплетки и проводники, которые можно найти с помощью трассоискателей.

Они состоят из генератора, который подает сигнал на металлическую часть кабеля и приемника, регистрирующего электромагнитный сигнал от проводника. Таким образом можно точно определить местоположение подземного кабеля.

Например, с помощью недорого и простого в использовании портативного искателя Tempo M501 можно обнаружить кабели и металлические трубы на глубине до 2 м.

Подземный кабельный локатор М501

Более дорогие и мощные приборы, такие как 3M Dynatel 2273М-ID/ER, способны найти кабели и трубы на гораздо большей глубине: до 9 м.

Надо иметь в виду, что дальность действия приборов для поиска следует выбирать исходя из глубины, на которой находится кабель и частоты подаваемого в него сигнала. Обычно ВОЛС размещают ниже глубины промерзания грунта, в большинстве случаев это меньше 2 м. Однако в ряде регионов России грунт промерзает глубже, например, в Новосибирске до 2,5 м. Поэтому менее мощные трассоискатели могут не справиться со своей задачей. Глубину промерзания грунта в каждом регионе можно уточнить в СНиП.

Сложный случай: небронированный оптический кабель в грунте

Несмотря на то, что хрупкие небронированные оптоволоконные кабели не предназначены для закладки под землю, иногда возникает необходимость создания таких ВОЛС. Например, для временных коммуникационных линий, на последней миле или для связи между производственными участками или разнесенными системами. Также неметаллические кабели устанавливаются в пластиковые или асбесто-цементные кабельные каналы.

В таком случае обязательно следует предусмотреть ряд мер, чтобы в будущем кабель можно было найти или предупредить его обрыв при проведении земляных работ. Неметаллические оптоволоконные кабели в защитной пластиковой оболочке, в том числе прочной ПВХ трубе, нельзя найти с помощью трассоискателей, даже таких совершенных, как приборы от 3M Dynatel.

В связи с этим следует помечать неметаллические ВОЛС в соответствии с правилами маркировки кабельных линий. Основные способы обозначения ВОЛС — это пассивные маркеры или ленты с металлическим проводником или RFID-метками.

Пассивные маркеры представляют собой прочные и надежные устройства, не требующие обслуживания на протяжении всего срока эксплуатации. Их можно обнаружить на глубине до 1,5 м с помощью маркероискателей. Маркеры не содержат источников питания, не боятся влаги и мороза. Срок службы таких маркеров соизмерим со сроком службы кабеля и может достигать 50 лет.

Установка пассивных маркеров

Точность обнаружения маркеров очень высокая. Существуют несколько типов маркеров с разной диаграммой отраженного сигнала и частотами, причем каждой резонансной частоте соответствует определенный цвет маркера и тип коммуникации: газопровод (желтый), водопровод (синий), канализация (зеленый), кабели связи (оранжевый), энергетика (красный) и др.

Таблица 1: Шаровые маркеры Scotchmark и Omni Marker для медных и оптических кабелей

Вид кабеля (витая пара или оптический кабель) Наименование 1401 XR Omni Marker 163
Частота 101.4 кГц 101.4 кГц
Диаметр 10,2 см 11,4 см
Вес 0,35 кг 0,14 кг
Глубина уст. 1,5 м 1,5 м
Мин кол-во для заказа 30 шт 1 шт
ВОЛС (оптический кабель) Наименование OmniMarker 180
Частота 92 кГц
Диаметр 11,4 см
Вес 0,14 кг
Глубина уст. 1,5 м
Мин кол-во для заказа 1 шт
Кабельное телевидение Наименование 1407 XR Omni Marker 165
Частота 77 кГц 77 кГц
Диаметр 10,2 см 11,4 см
Вес 0,35 кг 0,14 кг
Глубина уст. 1,5 м 1,5 м
Мин кол-во для заказа 30 шт 1 шт

Шаровые пассивные маркеры Greenlee OmniMarker оснащены тремя резонансными контурами, благодаря чему имеют равномерную сферическую диаграмму направленности отраженного сигнала. Они легко монтируются и не требуют обязательного крепления к коммуникации. Вместе с тем, на корпусе присутствуют ушки, которые позволяют выполнить крепление маркера к коммуникации при помощи стяжек.

Шаровые маркеры Scotchmark имеют один резонансный корпус и дипольную диаграмму направленности, однако за счет незамерзающей жидкости внутри корпуса, контур (как поплавок) всегда располагается в горизонтальном положении.

Диаграмма направленности маркеров Scotchmark и Omni Marker

Маркеры Greenlee UniMarker имеют плоскую форму и, также как и маркеры Scotchmark имеют дипольную диаграмму направленности. Это сужает площадь их обнаружения и усложняет процесс установки (их необходимо устанавливать в горизонтальной плоскости и крепить к коммуникации). Вместе с тем, UniMarker значительно дешевле аналогов, что в ряде случаев является основной причиной выбора такого решения.

Маркеры Greenlee UniMarker и OmniMarker и их диаграммы направленности

Носимые маркероискатели известных брендов, такие как Greenlee MarkerMate EML-100, могут работать с любыми маркерами, определять их точное местоположение и тип, даже через асфальт.

Маркероискатель Greenlee MarkerMate EML-100

Таким образом, маркеры являются одним из наиболее надежных способов отметить линию ВОЛС или наиболее важные ее точки. Кроме этого, в отдельных случаях используются маркировочные ленты.

Самые простые ленты представляют собой полосу яркого полиэтилена с металлической проволокой внутри для подключения трассоискателя. Они поставляются в рулонах по 100 м и укладываются в грунт выше коммуникационной линии. Для ВОЛС используются ленты зеленого цвета, которая хорошо заметна оператору землеройных машин.

Более совершенными являются ленты со встроенными электронными маркерами. В лентах серии 3M EMS Tape 7600 электронные метки расположены группами на расстоянии примерно 2 м друг от друга. Благодаря отказу от проволоки, такая лента проще в установке, не боится коррозии, ее можно обнаружить, даже если она разорвется под землей.

Чипы электронных меток позволяют с помощью маркеро-лентоискателя, определить местоположение ленты с точностью до 10 см вне зависимости от состояния грунта.

Маркероискатель 3M Dynatel 7420 EMS и маркировочная лента 3M 7621-XR-CT для линий связи

Новым типом маркировки являются шнуры с чипами. Принцип действия у них такой же, как и у маркировочных лент, но чипы помещены внутрь прочного шнура, который удобно протягивать через кабельные каналы.

Наряду с пассивными шаровыми и плоскими маркерами, ленты и шнуры с чипами являются наиболее точным и надежным способом обнаружения ВОЛС. Выбор того или иного способа маркировки зависит от конкретных условий. Так, ленты и шнуры обнаруживаются на глубине до 60 см и больше подходят для линий, размещенных на глубине около 1 м.

Выводы

Трассировка и поиск подземных ВОЛС в настоящее время не является проблемой благодаря наличию совершенных систем обнаружения маркеров и металлических проводников. Однако если пренебречь установкой маркеров, дорогостоящая оптоволоконная линия передачи данных может превратиться в расходы, потраченные впустую.

Источник: https://skomplekt.com/markirovka-i-poisk-nebronirovannogo-opticheskogo-kabelia-pod-zemlei/

Поиск подземных коммуникаций

Прибор для обнаружения кабеля под землей

При проведении строительства и ремонта существует риск повреждения какой-либо подземной кабельной или трубопроводной линии. Чтобы не допустить серьезной аварии или чрезвычайной ситуации, предварительно необходимо провести профессиональный поиск подземных коммуникаций, осуществляемый при помощи специального оборудования. Компания «Геотоп Инжиниринг» оснащена современными приборами и готова оперативно выполнить трассопоисковые работы в любой точке Московской области.

Когда проводится поиск подземных коммуникаций?

Подземное пространство под современным крупным городом, особенно таким как Москва, можно сравнить с запутанной паутиной, состоящей из кабелей и трубопроводов различного назначения:

  • проводов телефонной связи;
  • оптоволоконных линий компьютерных сетей;
  • электрических кабелей высокого и низкого напряжения;
  • водопроводов;
  • канализационных коллекторов;
  • газопроводов;
  • тепловых трасс.

Все это подходит практически к каждому дому. Таким образом, на каком бы участке не возникла необходимость вскрытия почвенного покрова, предварительный поиск кабеля под землей или поиск скрытых труб будет необходим. К услугам наших специалистов, в чьем ведении находится поиск подземных коммуникаций и кабелей, прибегают часто:

  1. Мы проводим трассопоисковые исследования в ходе топографической съемки перед капитальным строительством, реконструкцией сооружений (в этом случае цена поиска подземных коммуникаций входит в общую смету топосъемочных работ).

  2. Мы уточняем местонахождение труб и кабелей перед согласованием проведения земляных работ по их ремонту и замене.

  3. Поиск труб под землей важен во время бурения инженерно-геологических или водозаборных скважин (наша компания активно занимается и этой деятельностью).

Читайте также  Классы приборов по электробезопасности

Дистанционный поиск кабеля под землей

Трассопоисковые работы, которые мы проводим, делятся на две основные группы:

  1. Поиск кабелей и кабельных трасс.

  2. Поиск скрытых труб.

С электрическими силовыми линиями шутки плохи. Доказано это неоднократными примерами, когда повреждение высоковольтных кабелей приводило не только к авариям, с обесточиванием больших районов, но и к человеческим жертвам. Поэтому поиск кабеля под землей – чрезвычайно ответственная задача.

Для ее выполнения нашими специалистами используются трассоискатели, работающие в так называемом пассивном режиме поиска и предназначенные для установления глубины и направления прокладки подземных инженерных коммуникаций, по которым проходит электрический ток. Принцип, на основе которого осуществляется поиск кабеля в земле такими трассоискателями, заключается в улавливании излучения электромагнитного поля.

Токопроводящие коммуникации становятся доступными для обнаружения, как только наш специалист настроит поисковый прибор на нужный частотный диапазон. По показаниям индикаторов прибора определяется азимут кабельной линии, глубина залегания в точке снятия замера.

Внимание! Трассопоиск кабеля осложняется, если в момент поисковых работ он находится не под напряжением. В этом случае нами используются другие методы, и цена поиска кабеля в земле может увеличиться.

Дистанционный поиск скрытых труб

Правильно определить глубину и направление подземного трубопровода – задача не такая простая, как поиск кабеля в земле, находящегося под напряжением. Если только при прокладке трубопровода рядом не был уложен специальный сигнальный провод (его наличие дает нам возможность дистанционно обнаружить данную линию с поверхности земли, используя те же приборы пассивного поиска, что и при поиске электрокабелей). В прочих же случаях нам приходится применять другие методы, которые зависят от:

  • типа трассируемого трубопровода;
  • материала изготовления;
  • условий территории, на которой мы ведем изыскания.

Метод активного обнаружения

Хорошо зарекомендовал себя при трассировании металлических трубопроводов. Схож с методом, которым проводится поиск трассы кабеля в земле. Разница – в том, что в случае поиска трубы нам приходится принудительно вызывать в ней электрический ток, путем подсоединения к переносному генератору.

Важно! Метод требует строгого соблюдения мер электробезопасности. В том числе надежного заземления оборудования.

Метод зондирования (активного зондирования)

Мы используем его, когда проводим поиск пластиковых труб под землей, и возбудить электромагнитное поле непосредственно в самом трубопроводе не представляется возможным. Подходит этот метод и для асбестоцементных или бетонных труб, также не обладающих свойством электропроводности.

Суть метода заключается в том, что мы запускаем в трубопровод посторонний излучатель сигнала – зонд (небольших размеров передатчик, закрепленный на специальном кабеле), а находящийся у оператора трассоискатель (локатор), настроенный на излучаемую зондом частоту, фиксирует его точные координаты и глубину.

Важно! Активное зондирование можно совместить с телеинспекционной проверкой трубопровода. В этом случае, в дополнение к трассопоиску, выявляются проблемные участки трубопровода (отверстия, деформированные места, засорения и др.) для облегчения последующих ремонтных работ.

Георадарный метод

Наиболее универсальный метод. Георадары, кроме того, что мы применяем их в инженерно-геологических изысканиях (они эффективно выявляют пустоты в грунте), могут использоваться для обнаружения самых различных трубопроводов и других подземных коммуникаций.

Важно! Во избежание получения искаженных данных, любые приборы, с помощью которых ведется трассопоиск, должны проходить регулярную проверку и профилактическое обслуживание, регламентированное фирмой-изготовителем.

Из каких этапов состоит поиск кабеля в земле или подземного трубопровода

  1. Подготовка к трассопоиску. Мы анализируем предоставленные заказчиком или собранные в коммунальных службах Москвы данные о подземных коммуникациях исследуемого участка. Делаем выкопировки из генплана, схем прокладки инженерных сетей. Выбираем оптимальный метод поисковых работ.

  2. Рекогносцировка на участке работ. Ценную информацию, облегчающую дальнейшие трассопоисковые работы, нам может дать осмотр территории в поисках внешних признаков подземных коммуникаций. Такими признаками являются:

    • колодцы;
    • следы траншей;
    • видимые вводы в здания.
  3. Основной полевой этап. На нем мы проводим работу с трассопоисковыми приборами, составляем предварительные наброски схем.

  4. Камеральный этап. Вычерчиваются схемы обнаруженных подземных линий, проводится согласование с организациями, отвечающими за их эксплуатацию.

Поиск подземных коммуникаций и кабелей, наверное, как никакая другая геодезическая услуга, способствует обеспечению безопасности строительных и ремонтных работ. Мы гарантируем нашим клиентам, что, заказав компании «Геотоп Инжиниринг» поиск трубопровода или поиск кабеля в земле в Москве либо на каком-либо участке в пределах Московской области, они тем самым предотвратят повреждение подземных коммуникаций и связанные с этим аварийные ситуации.

ПОЛЕЗНЫЕ СТАТЬИ:

  1. Георадарное обследование
  2. Обследование провалов грунта

228

Источник: https://geotop.msk.ru/poisk-podzemnyx-kommunikacij.html

Поиск неизвестного кабеля или трубы под землей (зондирование местности на предмет наличия коммуникаций)

Прибор для обнаружения кабеля под землей

Перед началом земляных работ необходимо убедиться, что в месте их проведения отсутствуют подземные коммуникации : силовые кабели, кабели связи и передачи данных, трубопроводы. Для этого необходимо согласование таких работ со службами, ответственными за те или иные коммуникации. В идеальном случае, эти службы должны подтвердить отсутствие их коммуникаций на указанном участке, или показать где они проходят. К сожалению, в реальной жизни это сделать сложно, а в ряде случаев и вовсе невозможно. 

Идеальным прибором для поиска неизвестных (чужих) коммуникаций под землей, является георадар. Такой прибор способен определить все неоднородности земной поверхности на глубине до 25м. Причем он может найти пластиковые и металлические трубы, силовые и слаботочные кабели, потому как работает по принципу рентгеновского аппарата.

Однако, из-за высокой его стоимости, все чаще для зондирования местности на предмет наличия  кабелей используют трассоискатели. Последние намного дешевле но не дают 100% результата, а также требуют больше времени и сил для выявления неизвестных коммуникаций.

Зондирование местности не является функцией трассоискателей, однако существует ряд методик, позволяющих обнаружить некоторые металлические коммуникации. Рассмотрим особенности поиска неизвестного кабеля (трубы) при помоши трассоискателей, для чего разделим все коммуникации на группы:

Силовые кабели под нагрузкой и трубопроводы с катодной защитой

В этом случае, по кабелю протекает ток достаточно большой величины. Протекая по кабелю, ток образует электромагнитное поле, которое легко обнаруживается приемником в пассивном режиме поиска. Такие кабели ищутся в первую очередь и вероятность их нахождения – достаточно высока.

 Чаще всего для этого используется мониторинг сигналов на частотах 50Гц (силовые кабели), 100Гц (ток катодной защиты трубопроводов). Для поиска силового кабеля под нагрузкой на территории участка, достаточно включить приемник трассоискателя в пассивный режим и пройти по контуру исследуемого участка.

Когда кабель будет обнаружен, по уровню сигнала можно провести его трассировку и отметить его местоположение на участке.

Слаботочные кабели, обесточенные силовые кабели, металлические трубопроводы

Кабели связи в основном экранированы (в том числе и оптические) и электромагнитное поле, образованное движущимися электронами, невозможно обнаружить на поверхности земли. То же самое касается и обесточенных  силовых кабелей и металлических труб. Для определения таких коммуникаций, необходимо каким-то образом обеспечить передачу по ним тонального сигнала.

Это возможно сделать при помощи  генератора с индукционной антенной, при помощи которой можно навести в кабеле (трубе) сигнал без непосредственного доступа. Индукционная антенна образует вокруг себя электромагнитное поле. В случае, если в такое поле попадает проводник электрического тока, в нем появляются вихревые токи, которые распространяются по кабелю и приводят к образованию вокруг проводника нового поля. Это поле и отслеживается приемником.

В идеальном случае, для наведения сигнала в кабеле (трубе) необходимо расположить генератор непосредственно над ним. Поэтому:

  • инженер с генератором становится с одной стороны участка
  • генератор включается в режиме бесконтактного подключения к линии при помощи индуктора
  • другой инженер с приемником становится от него на расстоянии 20-30м
  • оба начинают двигаться параллельно.

В случае, если во время движения труба оказывается между инженерами, инженер с приемником сможет зафиксировать сигнал, наведенный инженером с генератором. Для определения коммуникаций этим методом, инженеры должны разбить весь участок на квадраты по 20-30м и пройти каждый из них вдоль, поперек и по диагонали.

Оптические кабели и пластиковые трубопроводы

В случае, если коммуникации не имеют проводящих электрический ток элементов, трассоискателями их обнаружить не удастся. Наилучшим для обнаружения и трассировки таких коммуникаций является метод с применением пассивных и интеллектуальных маркеров. Однако этот метод применим только в случае, если такие маркеры были установлены на этапе монтажа коммуникаций.

Смотрите также:

  • Поиск силового кабеля под землей
  • Принцип работы трассоискателей

Подписаться на рассылку статей

Источник: https://fibertop.ru/poisk_neizvestnogo_kabelya.htm/

Приборы для поиска и диагностики подземных инженерных коммуникаций

Прибор для обнаружения кабеля под землей

Третий глаз (Часть 1)

В восточных верованиях cчитается, что «третий глаз» – это некий энергетический центр, участок мозга, с помощью которого человек обретает возможность сверхчувственного восприятия, способность видеть с закрытыми глазами и беспрепятственно заглядывать в любые уголки мироздания.

Площадки в городе – это потенциальное «минное поле», на котором в качестве мин выступают подземные инженерные коммуникации и другие объекты, которые могут быть повреждены при земляных работах, выполняемых строительными и коммунальными службами: электросиловые и телефонные кабели, канализационные и газовые трубы и т. д.

Повреждения подземных коммуникаций приносят убытки на миллионы рублей: приходится их ремонтировать, нарушаются сроки выполнения основных работ и сдачи объектов. При подобных авариях получают ранения и даже гибнут люди.

Читайте также  Прибор для фазировки фаз

Даже если в распоряжении рабочих имеется план расположения подземных коммуникаций, полностью полагаться на него нельзя, так как неизвестно, все ли вновь прокладываемые коммуникации были в него занесены. Прежде чем начать земляные работы, работники должны точно знать, что в земле нет никаких коммуникаций, не указанных на плане.

Следует заметить, что не существует универсального способа локации, позволяющего выявлять любые подземные объекты, – каждый метод имеет определенную сферу применения и ряд ограничений. Поэтому строительные и коммунальные компании широко используют различную аппаратуру для поиска подземных коммуникаций.

Электромагнитные трассоискатели (локаторы)

Это приборы для определения местонахождения и повреждений подземных токопроводящих инженерных коммуникаций (кабели электро- и телефонных линий, металлические и полимерные, армированные металлическим кордом или снабженные сигнальным проводом трубопроводы для жидкостей и газов, коробы и т. п.) в плане и по глубине залегания.

Сегодня трассоискатели являются популярным оборудованием для обслуживания и мониторинга состояния подземных коммуникаций, используются для выявления незаконных врезок, мест закупорки труб, обнаружения под землей тросов и прочей арматуры.

В зависимости от узкого назначения приборы могут иметь «говорящие названия»: кабелеискатели, течеискатели, люкоискатели, трассодефектоискатели и т. д.

Компоненты трассоискателей

Электромагнитный трассоискатель состоит из легкого переносного гетеродинного приемника, который обеспечивает высокую помехоустойчивость и чувствительность, дает возможность работать в условиях сильных внешних помех, при слабом уровне сигнала, на насыщенных коммуникациями участках. На приемнике имеются кнопки управления и дисплей, на который выводятся результаты поиска трассоискателя. Питание приемника может осуществляться от батарей или электрического кабеля.

Разыскиваемые коммуникации могут находиться под напряжением или быть обесточенными. Для поиска обесточенных коммуникаций применяют компактный генератор (передатчик) – источник электромагнитных импульсов определенной частоты. Генератор может присоединяться к исследуемой трубе или кабелю с помощью клемм, либо импульсы в коммуникацию могут передаваться бесконтактным способом.

Для приема сигналов служат антенны, одна или несколько, различной конструкции и пространственной ориентации, которые также могут иметь возможность поворачиваться.

Если нужно определить положение неметаллической трубы, по которой течет жидкость, и у трубы нет провода-спутника, можно использовать специальные трассоискатели, имеющие в комплекте плавающие датчики-зонды, которые, перемещаясь в трубе вместе с жидкостью, позволяют определить местонахождение трубы.

Подобным же образом трассоискатели с видеоголовкой с миниатюрным передатчиком используются для поиска повреждений и засоров в трубах.

Для определения мест повреждения кабеля или трубы (и соответственно нахождения мест утечки электрического тока и воды) используют заглубляемые в грунт контактные щупы, входящие в комплект прибора.

Как работают трассоискатели

Электромагнитные трассоискатели определяют положение труб и кабелей по магнитному полю, существующему вокруг исследуемой коммуникации. Изоляция коммуникации и грунты различных типов, окружающие коммуникацию, не изменяют вида поля. Самый сильный сигнал принимается, когда прибор находится непосредственно над коммуникацией.

Пассивный и активный режимы. Если по коммуникации протекает переменный электрический ток, он создает магнитное поле и прибор может найти коммуникацию, работая в пассивном режиме. Однако точность этого метода сравнительно невысока, с его помощью сложно определить глубину залегания коммуникации более 1–2 м и найти ее, если несколько других коммуникаций расположены с ней рядом.

Если по коммуникации не протекает электрический ток, то для того, чтобы трассоискатель мог выявить этот кабель или трубопровод, в нем нужно создать ток с помощью генератора. Такой режим работы прибора называется активным. Этот метод точнее пассивного и позволяет выявить объект на бóльших глубине залегания и расстояниях.

Когда имеется доступ к какому-либо концу или участку разыскиваемой трубы или кабеля, например, через смотровой колодец, генератор подсоединяется к коммуникации с помощью зажима-«крокодила» или индукционного зажима, и в ней индуцируется сигнал. Использование генератора очень удобно при выявлении одной из многих пролегающих рядом коммуникаций.

Генератор подключается к коммуникации, индуктивный ток наводится только на этот объект, и он с легкостью отслеживается трассоискателем на расстоянии 1 км и более от места подключения генератора. Изначально такой способ использовался для поиска дефектов электрических и телефонных кабелей. В кабель подается электрический ток, оператор с приемником идет вдоль трассы, определяя ее местоположение.

В месте разрыва, короткого замыкания или иного дефекта мощность принимаемого сигнала резко меняется.

Когда к разыскиваемой коммуникации нет доступа, с помощью генератора, способного создавать объемное индуктивное электрическое поле, в коммуникации дистанционно наводят ток определенной частоты (то есть индуктивное магнитное поле), которое улавливает приемник.

Оптимальная частота для эффективной локации зависит от типа грунта, типа трубы или кабеля и многих других факторов. Поэтому трассопоисковые приборы ведущих мировых производителей могут работать на разных частотах, от нескольких герц до 200 кГц. Причем выбор рабочей частоты может быть как автоматическим, так и устанавливаться вручную.

Многие модели трассоискателей имеют всего две-три наиболее часто используемые рабочие частоты: 50 Гц для обнаружения силовых кабелей под напряжением и 100 Гц для трассировки стальных труб под катодной защитой. В более продвинутых зарубежных моделях представлен более широкий диапазон рабочих частот – от 10 до 35 кГц.

Это значительно увеличивает разрешающую способность и чувствительность прибора в условиях обилия разнообразных коммуникаций и сильного электромагнитного «шума».

Приемник. Принцип действия приемника достаточно прост. Он настраивается на частоту сигнала от коммуникации и по изменению мощности сигнала определяет место нахождения объекта.

Дальность действия (расстояние от генератора до приемника) у разных типов трассоискателей составляет от 0,5 м до 20 км с точностью определения местоположения от 10 до 30 см; максимальная глубина, на которой прибор обеспечивает определение трассы, обычно составляет до 10 м.

Показания приборов зависят от класса прибора, диаметра трассы, мощности сигнала генератора, вида грунта, наличия помех. В частности, у труб и кабелей большого диаметра велика площадь поверхности контакта с грунтом и за счет этого утечка сигнала на землю.

При одной и той же мощности сигнала его ослабление из-за утечки на землю в больших трубах происходит на более коротком расстоянии, чем в коммуникациях малого диаметра. Имеются модификации приборов, предназначенные для поиска протяженных объектов – труб, кабелей, и модификации для обнаружения небольших объектов, например крышек смотровых колодцев или задвижек трубопроводов.

В приборах обеспечиваются цифровая обработка и оптическая индикация принимаемого сигнала. Модели с графическим дисплеем, как правило, показывают цифровые значения параметров электромагнитного поля или в лучшем случае столбчатую диаграмму уровня сигнала. Удобнее воспринимать силу сигнала «на слух» через наушники, по тональности звука приемника.

Когда оператор идет по участку, в котором находится коммуникация, приемник генерирует звуковой сигнал, тон сигнала становится все выше по мере приближения прибора к коммуникации и начинает постепенно снижаться по мере удаления от нее. Отмечая на поверхности почвы места, в которых тон сигнала был самым высоким, оператор обозначает трассу подземной коммуникации.

Опытный оператор может по звуку прибора уверенно различать разные типы трубопроводов и кабелей. Ряд отечественных моделей трассоискателей имеют лишь функцию акустической индикации. Но удобнее работать с приборами, у которых наряду с аудиосигналом на экране отображаются трассы, а также глубина положения коммуникаций.

Особенно удобны такие приборы в случае исследования пересекающихся коммуникаций. Освоение таких приборов не требует особых знаний и навыков.

Одна из особенностей магнитного метода разведки состоит в том, что самые сильные сигналы исходят из конечных точек исследуемого объекта, потому что в них сходятся силовые линии магнитного поля. Поэтому объект, расположенный вертикально (даже небольшой стальной бочонок), часто бывает обнаружить легче, чем горизонтально ориентированную водопроводную трубу в сто метров длиной.

Такой же эффект возникает в местах соединительных стыков того же водопровода, состоящего из отдельных секций: на экране прибора магниторазведки появляется картинка из цепочки сигналов максимальной силы, соответствующих местам расположения стыков отдельных секций трубы, по этой картинке можно определить трассу и глубину залегания объекта, соединив между собой отдельные точки.

Прогресс в конструкции трассоискателей. Современные модели трассопоискового оборудования имеют улучшенную защиту от электромагнитных помех, благодаря чему поиск коммуникаций существенно облегчается.

Наиболее сложные модели трассоискателей подключаются к портативному компьютеру и позволяют с помощью специального программного обеспечения получать полную информацию о пространственном положении подземных и подводных коммуникаций на обследуемой территории, а также для привязки к абсолютным географическим координатам имеют возможность совместной работы с приемниками GPS/ ГЛОНАСС. Данные могут вноситься в электронные карты и в электронный проект строительного объекта.

В настоящее время распространен электрохимический метод защиты металлических труб от коррозии. Поэтому некоторые трассоискатели имеют функцию CPS – «поиск катодной защиты», что делает нахождение подобных коммуникаций легким и быстрым.

Люкоискатели. Коммунальным службам, и особенно организациям, обслуживающим различные кабели, часто требуется отыскивать люки смотровых колодцев, скрытые под снегом и землей. Для этого применяются электромагнитные металлоискатели специфической конструкции.

Прибор имеет датчик – индуктивную катушку, в которой генератор создает высокочастотное электромагнитное поле. При приближении датчика к металлическому люку частота поля меняется, что выражается в изменении тона звукового сигнала в наушниках.

Более совершенные приборы кроме наушников снабжаются ЖК-дисплеем, на котором результаты поиска представляются визуально.

Преимущества и недостатки трассоискателей

Простые портативные электромагнитные трассоискатели сравнительно недороги, доступны, их можно взять в аренду, ими сравнительно легко научиться пользоваться – они могут эффективно применяться даже неопытными операторами.

Основной недостаток метода электромагнитной локации заключается в том, что с ее помощью нельзя выполнять трассировку коммуникаций, не проводящих электрический ток: пластмассовых, бетонных и керамических труб.

Эта задача решается путем использования других приборов – георадаров, о которых мы поговорим в следующей статье.

Источник: https://os1.ru/article/4533-pribory-dlya-poiska-i-diagnostiki-podzemnyh-injenernyh-kommunikatsiy-tretiy-glaz-ch-1