Последовательное соединение импульсных блоков питания

Проектирование импульсного источника питания с активным ККМ. Эпизод I

Последовательное соединение импульсных блоков питания

В своей предыдущей статье я говорил, что продолжу рассказ о работе с датчиками тока на эффекте Холла. С того момента прошло не мало времени, выход продолжения затянулся, да и писать «скучную теорию» я не любитель, поэтому ждал практической задачи.

Еще одной причиной отсутствия статей была моя работа в одной «современной успешной IT-hardware-компании», сейчас наконец-то я ее покинул и окончательно пересел на фриланс, так что время для статьи появилось)) Недавно ко мне обратился мой старый наставник и просто очень хороший человек.

Естественно я не мог отказать в помощи, а оказалось все достаточно просто — меня попросили сделать блок питания для КВ трансивера FT-450, который будет более стабильный в работе, особенно при пониженном входном напряжении, чем уже имеющийся Mean Well. Прошу заметить, я не говорю о том, что Mean Well плохая фирма, просто в данном случае нагрузка достаточно специфическая, а так продукция у них вполне себе хорошая.

— Заявлен выходной ток в 40А, на деле при потреблением в 30-35А (на передаче) блок уходит в защиту; — Наблюдается сильный нагрев при длительной нагрузке; — Совсем становится плохо, когда использует его на даче, где напряжение в сети 160-180В; — Напряжение максимальное 13,2-13,4В, а хотелось бы 13,8-14В с возможностью подкрутить +-20%. Особенностью данной статьи будет то, что проект продвигается вместе с ней.

Я за него только засел и поэтому смогу рассказать обо всех этапах разработки: от ТЗ до готового прототипа. В таком формате статей с наскоку на гике я не нашел, обычно люди пишут уже проделав всю работу и забыв половину мелочей, которые часто несут в себе главный интерес. Так же эту статью я хочу написать доступным для новичков языком, поэтому местным гуру стоит чуточку проще относиться к «неакадемичности» моего слога.

Технические требования

Любой проект всегда начинается с технического задания и обсуждений. Обсуждения мы прошли, остается ТЗ. У меня проект не коммерческий, а так сказать open source, поэтому я не буду тратить большое количество времени и ограничусь перечнем технических требований. Для чего это нужно? Те, кто работает в компаниях связанных с разработкой чего либо меня поймут — «без ТЗ проект не взлетает», но для людей не связанных с промышленной разработкой этот момент может быть не очевиден.

Поэтому немного объясню… В процессе разработки если вы не опираетесь на ТЗ, то с вероятностью около 100% уйдете от изначально желаемого результата. Например, вначале вы хотели получить 1000 Вт мощности блока питания, но не нашли трансформатор подходящий и поставили тот, что попался под руку. В результате железка стала на 700 Вт, а вы то планировали на 1000! Для любителя это не смертельно, он просто убьет кучу денег и времени, не получив результата.

Читайте также  Соединение плоских кабелей

Для работодателя инженера же это финансовая катастрофа, просроченный проект, а для инженера часто просто пинок под зад на улицу. И таких нюансов будет море, по мимо трансформатора еще что-то не найдется, вам яблоко на голову упадет и вы решите добавить каких нибудь «светюлек» и так далее.

Как этого избежать? Именно для этого сумрачный советский гений придумал «ГОСТ 34. Разработка автоматизированной системы управления (АСУ)».

Достаточно просто сделать как надо ТЗ по данному ГОСТу, которое займет 30-50 страниц и ваш проект на стадии идеи будет соответствовать конечному результату в виде железки, надо лишь идти по пунктам. Если написано «трансформатор на 1000 Вт», то вы ищите/добываете его именно на 1000Вт, а не на авось берет «чуть чуть поменьше». Я работал и в ВПК и в частных компаниях: первые молятся на адекватные ТЗ и тех. проекты, которые обычно выглядят как томик «Война и Мир», поэтому наши танки лучше всех.

Вторые же забивают «на бестолковую порчу леса», поэтому гражданская электронная продукция на выходе в России в большинстве случаев — «гуано на ардуине».

И так, чтобы избежать «хлама» на выходе мы составим список технических требований, которыми должен обладать наш прототип. Пока он их не достиг — проект считается незавершенным. Вроде все просто.

Требования к импульсному блоку питания:

— Выходное напряжение с возможностью регулировки в пределах 10-15В DC; — Входное напряжение сети: 160-255В AC; — Ток вторичных цепей: 40А — Наличие синфазного фильтра; — Наличие корректора коэффициента мощности (ККМ); — Косинус фи: не менее 0,9; — Гальваническая развязка входа с выходом; — Защита от КЗ во вторичной цепи; — Время срабатывания защиты по току: не более 1 мс; — Стабильность выходного напряжения: не хуже 0.1%; — Температура силовых элементов устройства: не более 55 градусов при 100% нагрузке; — Общий КПД устройства: не менее 90%; — Наличие индикатора напряжения и тока.

Еще хотел бы отметить одну особенность проектируемого ИИП — он полностью аналоговый. Это было достаточно важным требованием, т.к. я последние годы в основном проектировал с использованием DSP процессоров в качестве управляющего «мозга», но это пугает «заказчика». Ибо на данный момент он проживает в 2500 км от меня и в случае поломки ремонт затянется на долго, поэтому необходимо сделать устройство с максимальной ремонтопригодностью. Заказчик человек опытный в аналоговой схемотехники и отремонтирует в случае проблем без каких либо пересылок, максимум придется позвонить да обсудить проблему.

Подытожим: когда я разработаю, изготовлю, а затем протестирую ИИП и получу в результате тестов ТТХ, которые как минимум не хуже описанных выше — можно будет считать, что проект успешен, блок можно отдавать владельцу, а самому радоваться еще одно успешной железке. Но это все далеко впереди…

Функциональная схема

Обычно я с начальством воевал на тему, что функциональные схемы для чайников и отказывался рисовать, но т.к. статья все таки предназначена для новичков в электронике и чтобы всем было интересно читать я все таки ее нарисую и распишу, что делает каждый блок.

Читайте также  Последовательное соединение ионисторов

Да и при условии отсутствия полноценного ТЗ данная схема позволит мне не отклоняться в процессе работы от изначальной идеи. Рисунок 1 — Функциональная схема ИИП Теперь кратко пробегусь по каждому блоку, а более подробно данные решения разберем уже на этапе разработки схемотехники.

И так сами модули:

1) Синфазный фильтр — он призван спасти сеть и бытовые приборы подключенные к ней от помех, которые генерирует наш блок питания. Не пугайтесь — любой импульсный блок питания их выдает, поэтому в 90% ИИП имеется фильтр синфазных помех. Так же он оберегает и наш блок от помех приходящих из сети.

На эту тему недавно наткнулся на чью-то бакалаврскую работу, там достаточно понятно все расписано — статья. Автор диплома Куринков А.В., за что его сердечно поблагодарим, хоть один диплом бакалавра в этом мире станет полезен))

2) Дежурное питание «классическое» на микросхеме TOP227, схема скорее всего будет взята прямо из даташита с добавление гальванической развязки от сети через оптрон. Выход будет реализован в виде 2-х развязанных друг от друга обмоток с напряжением 15В и 1А каждая. Одна будет питать ШИМ контроллер корректора, вторая ШИМ контроллер полумоста.

3) Выпрямитель выполнен на диодном мосте. Изначально хотел применить синхронный на N-канальных Mosfet, но на таких напряжениях и при токе 3-4А это будет бесполезная трата ресурсов.

4) Активный корректор мощности — без него никуда как только речь идет о хорошем КПД, да и по требованиям законодательства применение ККМ обязательно. ККМ это по факту обычный бустерный преобразователь, который закроет 2 проблемы: низкое входное напряжение, т.к.

на своем выходе он стабильно будет выдавать 380В и позволит равномерно отбирать мощность из сети. Микросхему применил весьма популярную, китайцы (и не только) любят ставить ее в сварочные инвертора в тех же целях — ICE2PCS01.

Таить не буду — взял ее как проверенное временем решение, на ней собирал ККМ на 6 кВА для полуавтомата и проблем нет уже не первый год, надежность меня подкупает.

5) Непосредственно преобразователь напряжения реализован по топологии — «полумост», советую для знакомство с ней прочитать главу в книге Семенова «Силовая электроника: от простого к сложному».

Контроллер полумоста реализован на «классической» как Чайковский микросхеме TL494: дешево, функционально, надежно, проверено временем — что еще требуется? Кто считает ее старой может обратить свой взор на что-то от Texas из серии UCC38xxx.

В данном модуле реализована обратная связь по напряжению на TL431 + PC817, а так же защита по току на датчике на эффекте Холла — ACS758.

6) Силовой трансформатор я планирую реализовать на сердечнике компании Epcos типа ETD44/22/15 из материала N95. Возможно мой выбор изменится дальше, когда буду рассчитывать моточные данные и габаритную мощность.

7) Долго колебался между выбором типа выпрямителя на вторичной обмотке между сдвоенным диодом Шоттки и синхронным выпрямителем. Можно поставить сдвоенный диод Шоттки, но это P = 0,6В * 40А = 24 Вт в тепло, при мощности ИИП примерно в 650 Вт получается потеря в 4%! При использование в синхронном выпрямителе самых обычных IRF3205 с сопротивление канала тепла выделится P = 0,008 Ом * 40А * 40А = 12,8 Вт.

Читайте также  Соединение реле давления с насосом

Получается выигрываем в 2 раза или 2% кпд! Все было красиво, пока я не собрал на макете решение на IR11688S. К статическим потерям на канале добавились динамические потери на коммутацию, в итоге то на то и вышло. Емкость у полевиков на большие токи все таки большая. лечется это драйверами по типу HCPL3120, но это увеличение цены изделия и чрезмерное усложнение схемотехники.

Собственно из этих соображений решено было поставить сдвоенный Шоттки и спать спокойно.

8) LC-контур на выходе, во-первых, уменьшит пульсации тока, во-вторых, позволит «срезать» все гармоники. Последняя проблема крайне актуальна при питании устройств работающих в радиочастотном диапазоне и имеющие в своем составе высокочастотные аналоговые цепи. У нас же речь идет от КВ трансивере, поэтому тут фильтр просто жизненно необходим, иначе помехи «пролезут» в эфир. В иделе тут еще можно поставить на выход линейный стабилизатор и получить минимальные пульсации в единицы мВ, но на деле скорость ОС позволит и без «кипятильника» получить пульсации напряжения в пределах 20-30 мВ, внутри трансивера критичные узлы запитываются через свои LDO, так что его избыточность очевидна. Ну вот мы и пробежались по функционалу и это только начало)) Но ничего, дальше пойдет бодрее ибо начинается самая интересная часть — расчеты всего и вся!

Расчет силового трансформатора для полумостового преобразователя напряжения

Сейчас немного стоит подумать о конструктиве и топологии. Я планирую применять полевые транзисторы, а не IGBT, поэтому рабочую частоту можно выбрать побольше, пока задумываюсь о 100 или 125 кГц, такая же частота кстати будет и на ККМ. Повышение частоты позволит несколько уменьшить габариты трансформатора.

С другой стороны задирать сильно частоту не хочу, т.к. применяю TL494 в качестве контроллера, после 150 кГц она себя уже не так хорошо показывает, да и динамические потери вырастут.

Исходя из таких вводных, посчитаем наш трансформатор.

У меня есть в наличии несколько комплектов ETD44/22/15 и поэтому пока ориентируюсь на него, список исходных данных таков:

1) Материал N95; 2) Тип сердечника ETD44/22/15; 3) Рабочая частота — 100 кГц; 4) Выходное напряжение — 15В; 5) Выходной ток — 40А. Для расчетов трансформаторов до 5 кВт использую программу «Старичка», она удобна и достаточно точно считает. После 5 кВт начинается магия, частоты растут для уменьшения габаритов, а плотности поля и тока достигают таких значений, что даже скин-эффект способен менять параметры чуть ли не в 2 раза, поэтому для больших мощностей применяю дедовский метод «с формулами и выводом карандашом на бумаге». Вписав в программку свои вводные данные был получен следующий результат: Рисунок 2 — Результат расчета трансформатора для полумоста

На рисунке с левой стороны отмечены вводные данные, их я описал выше. По центру фиолетовым цветом выделены результаты, которые нас больше всего интересуют, пробегусь кратко по ним:

Источник: https://habr.com/post/400381/