Содержание
- 1 Устранение паразитных колебаний, возникающих при параллельном соединении полевых транзисторов MOSFET
- 2 Немного о блоках питания усилителей (часть I)
- 3 Составные транзисторы. Схемы включения
- 4 6.07. Специальные вопросы проектирования сильноточных источников питания
- 5 1. Транзистор
- 5.1 1. Увеличение мощности транзистора
- 5.2 2. Защита от перегрузки по току
- 5.3 3. Составной транзистор с высоким выходным сопротивлением
- 5.4 4. Защита транзистора от глубокого насыщения
- 5.5 5. Схема ограничения насыщения относительно низковольтных ключей
- 5.6 7. Составной транзистор
- 5.7 9. «Алмазный» транзистор
- 5.8 11. Использование транзистора в качестве регулирующего элемента или в ключевом режиме
- 6 Подключение транзисторных выходов ко входу контроллера — блог СамЭлектрик.ру
Устранение паразитных колебаний, возникающих при параллельном соединении полевых транзисторов MOSFET
Основная проблема при параллельном включении MOSFET полевых транзисторов — возникновение паразитных колебаний. В статье рассмотрены причины возникновения паразитных колебаний в полевых транзисторах компании Advanced Power Technology, исследованы методы их устранения и доказано, что добавление к базе транзистора индуктивности типа ферритового цилиндра (Ferrite bead) является наиболее оптимальным решением. Полученные результаты справедливы и для биполярных транзисторов типа IGBT.
Природа паразитных колебаний
Рис. 1. Паразитные колебания между силовыми транзисторами
Колебания возникают при скачке напряжения стока в момент переключения силовых транзисторов. Рис. 1 показывает колебания, возникающие у двух параллельно соединенных полевых транзисторов APT5024BLL (номинальные напряжение 500 В и ток 22 А). Каждый полевой транзистор в своем составе имеет резистор сопротивлением 10 Ом. Он располагается между затвором и драйвером управления затвором. Результаты эксперимента получены при напряжении сток-исток 333 В, токе 44 А и температуре среды 25 °С.
Напряжение драйвера управления затвором составляло 15 В. В качестве драйвера использовалось устройство Micrel MIC4452 с симметричной разводкой контактов затвора. Как видно из рис. 1, на затворе возникают колебания достаточно высокой частоты. Диапазон частот колебаний лежит в пределах от 50 до 250 МГц.
Такие высокочастотные колебания недопустимы, так как это может стать причиной скачков напряжения на затворе, излучения радиочастотных помех, высоких потерь на переключение, способных вывести из строя конечное изделие.
Добавление индуктивности типа Ferrite bead1
Данный тип индуктивности представляет собой ферритовый цилиндр с отверстием в оси для проводника. Находит широкое применение для подавления радиочастотных помех.
Добавление индуктивного элемента Ferrite bead с резистором на затворе силового транзистора (рис. 2) устранило паразитные колебания при минимизировании потерь на переключение. Фактически добавление индуктивности более эффективно, чем использование резистора на затворе, так как ее импеданс прямо пропорционален частоте.
Ширина полосы пропускания сигнала, поступающего с драйвера управления затвором, около 2 МГц, тогда как частота, на которой возникают паразитные колебания, составляет 50–250 МГц. Поэтому импеданс индуктивного элемента по отношению к частоте шумовых колебаний в 25–125 раз выше, чем по отношению к сигналу с драйвера. Высокое сопротивление индуктивности достаточно эффективно блокирует помехи, вызванные протеканием тока от истока к затвору.
Более надежно паразитные колебания могут быть устранены при использовании индуктивности достаточной величины и, наравне с этим, при проведении демпфирования резистором затвора.
Рис. 2. Индуктивный элемент Ferrite bead с резистором на затворе силового транзистора
Для подавления помех элементы Ferrite bead могут использоваться не только на параллельно установленных транзисторах. При этом будет достигаться тот же эффект: высокочастотные шумы на затворе будут блокироваться, устраняя любые попытки возникновения колебаний.
На рис. 3 показаны переходные процессы в момент выключения двух параллельно соединенных полевых транзисторов MOSFET — APT5024BLL. В эту серию были последовательно добавлены индуктивные элементы с резисторами сопротивлением 4,3 Ом на каждом затворе. Включение параллельно соединенных полевых транзисторов происходит с теми же колебаниями, что и выключение.
Рис. 3. Момент выключения двух APT5024BLL
На рис. 4 изображены осциллограммы при включении двух параллельных силовых транзисторов APT50M65LLL, на затворе каждого из которых размещен резистор сопротивлением 4,3 Ом. Характеристики этих же устройств изображены на рис.
5, но только уже с затворными резисторами сопротивлением 1 Ом и индуктивными элементами Ferrite bead маленькой величины на каждом затворе.
Колебание устранено, но при этом пришлось смириться с 8-процентным увеличением энергии, затрачиваемой на включение, и незначительным увеличением задержки при включении.
Рис. 4. Момент включения двух APT50M65LLL с наличием затворных резисторов
Рис. 5. Момент включения двух APT50M65LLL с наличием резисторов и Ferrite bead на затворе
Рис. 6 показывает возникновение колебаний при выключении силовых транзисторов с одним сопротивлением на затворе без индуктивного элемента, а на рис. 7 (при добавлении индуктивности к затвору) генерация исчезает. Как и на рис.
4–5, здесь использовались резисторы сопротивлениями 4,3 Ом и 1 Ом в комбинации с индуктивностями Ferrite bead. В этот раз индуктивные элементы меньшего сопротивления привели к уменьшению энергии, затрачиваемой на выключение, несмотря на то, что задержка на выключение возросла. Заметим, что затворы на рис.
7 на грани генерации, поэтому для оптимального результата необходимо немного повысить сопротивление на затворе.
Рис. 6. Начало процесса включения транзисторов
Рис. 7. Окончание процесса включения транзисторов
Если для устранения колебаний использовались бы только резисторы (рис. 1 и 4), энергии, затрачиваемые на переключение транзисторов, были бы больше, чем при использовании индуктивностей Ferrite bead на каждом затворе.
Добавление индуктивных элементов — достаточно привлекательное решение. Они недороги, малы и просты при использовании. На сегодня доступен широкий ассортимент индуктивностей Ferrite bead с различными параметрами.
Энергия, затрачиваемая на переключение, может быть оптимизирована экспериментальным путем различными комбинациями сопротивлений и индуктивностей. Некоторые индуктивности имеют достаточно гибкое сопротивление с монотонной частотной характеристикой.
Если индуктивности достаточно большие и не имеют потерь, затворные резисторы могут не использоваться.
Альтернативные решения устранения паразитных колебаний
Контурные площадки
Может показаться лишним добавление индуктивности Ferrite bead к цепи управления затворами, решающей проблему паразитных колебаний. Лучшие решения, реализованные на практике, рекомендуют проводить уменьшение индуктивности драйвера управления затвором путем использования плотной компоновки схемы.
Однако ключ с компоновкой драйвера управления затвором обладает недостаточной индуктивностью. Поэтому предпочтительным решением выглядит контурная площадка. Проблема возникает из-за ее большой площади и заключается в том, что контур выступает как антенна, которая принимает высокочастотные шумы.
Длинный вывод драйвера управления затвором фактически устраняет колебания благодаря повышению паразитной индуктивности самого драйвера.
Применение стабилитронов
Установка стабилитронов между выводами затвора и истока эффективна при подавлении шумов, возникающих на низких частотах переключения, и при наличии длинного вывода драйвера управления затвором. Однако стабилитроны неэффективны при подавлении шумов на частоте в десятки мегагерц.
На рис. 8 показана частотная характеристика стабилитрона (номинальное напряжение 15 В, корпус DO-41). Выводы диода были обрезаны до длины 5 мм, необходимой для установки диода на поверхность печатной платы.
На частоте вплоть до 250 МГц импеданс корпуса стабилитрона является чисто емкостным, на высших частотах преобладает индуктивное сопротивление корпуса, что позволяет диоду выступать в качестве катушки индуктивности.
Так же, как и у обычных диодов, емкостное сопротивление стабилитрона уменьшается с повышением напряжения обратного смещения.
Рис. 8. Частотная характеристика стабилитрона
Наличие стабилитрона, приложенного к затвору, повышает зависимое от напряжения и частоты емкостное сопротивление колебательного RLC-контура, где могут возникнуть паразитные колебания. Добавленное сопротивление не играет никакой роли, так как емкостное сопротивление стабилитрона по сравнению с входным емкостным сопротивлением MOSFET полевого транзистора незначительно.
С тех пор как помещение стабилитрона между затвором и истоком перестало приносить значительные результаты (при подавлении высокочастотных шумов и паразитных колебаний), стало лучше обходиться без них. Однако они могут быть полезны для подавления низкочастотных шумов, таких, которые возникают, например, при управлении двигателем драйвером управления затворами с длинными выводами.
Заключение
Мощные MOSFET имеют много преимуществ. При правильном применении они улучшают всю конструкцию системы, которая часто содержит меньше компонентов, легче, компактнее и имеет лучшие характеристики, чем те, которые могут быть достигнуты на приборах другого типа.
Так же, как и все мощные полупроводниковые приборы, мощные MOSFET имеют свои собственные маленькие технические тонкости, которые необходимо соблюдать при использовании силовых транзисторов в процессе работы:
- Паразитные колебания между двумя параллельно установленными полевыми транзисторами недопустимы, так как значительно уменьшается надежность, эффективность устройства.
- Индуктивности Ferrite bead очень эффективны в устранении паразитных колебаний до тех пор, пока уменьшаются потери на переключения, так как они действуют как частотнозависимый затворный резистор.
- Установка стабилитрона между затвором и истоком не контролирует высокочастотные паразитные колебания.
Если эти тонкости правильно понять и соблюдать, потенциальные ловушки могут быть легко преодолены при минимальных затратах. Это повышает возможности устройства и его эффективность на высоких частотах.
Литература
- Jonathan Dodge. Eliminating parasitic oscillations between parallel MOSFETs. AN APT-0402 Rev A. № 8.
Скачать статью в формате PDF
2005_01_34.pdf |
Источник: https://power-e.ru/2005_01_34.php
Немного о блоках питания усилителей (часть I)
Казалось бы что может быть проще, подключить усилитель к блоку питания, и можно наслаждаться любимой музыкой?
Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.
Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.
Стабилизатор или фильтр?
Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания.
Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения.
Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.
Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.
Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:
Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.
Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц :(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.
Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.
Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.
Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.
В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.
Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.
Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:
Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.
Пиковая мощность
Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов.
Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор.
Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.
Стабилизированный блок питания такого эффекта не даёт.
Параллельный или последовательный стабилизатор ?
Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:
Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.
Автор использует стабилитроны для питания операционных усилителей. При этом можно организовать индикацию напряжения питания практически без дополнительных затрат (светодиодам не нужны гасящие резисторы):
Защитные резисторы
Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и… денег. Между тем, дешёвый резистор может спасти ваш усилитель!
Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.
На фото показан усилитель, где монтажник перепутал транзисторы TIP3055 с TIP2955.
Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.
Главное — падение напряжения
При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.
Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода :
В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли. В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях. Поэтому влияние проводников тут может быть весьма существенным.
Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.
0.036 Ом в отличие от 0.0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше. Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.
Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:
Импульсы заряда
Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель. Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя. цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.
Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:
Увеличение по клику
На рисунке показан вариант печатной платы:
Увеличение по клику
Автору до сих пор попадаются усилители, у которых высокий уровень фона вызван неправильной разводкой земли и подключением дорожек от разных «потребителей» к выходам выпрямителя.
Пульсации
Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.
Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:
При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».
Продолжение следует…
Статья подготовлена по материалам журнала «Практическая электроника каждый день»
Джек Розман
Вольный перевод: Главного редактора «РадиоГазеты»
Источник: https://radiopages.ru/blok_pitaniya.html
Составные транзисторы. Схемы включения
Транзисторы как силовые элементы многих радиоэлектронных устройств для нормальной работы должны выполнять следующие функции:
1. Обеспечивать управление заданным током нагрузки при большом усилении по мощности.
2. Обладать достаточной (с учётом заданной выходной мощности и диапазонов изменения входного и выходного напряжений) рассеиваемой мощностью.
3. Иметь максимально допустимое напряжение коллектор – эмиттер, позволяющее без опасности пробоя обеспечивать необходимое падение напряжение на переходе коллектор – эмиттер при возможных значениях входного и выходного напряжений.
В некоторых случаях имеющиеся в наличии транзисторы не позволяют выполнить одно или несколько вышеописанных условий, тогда прибегают к помощи так называемых составных транзисторов. Схем составных транзисторов существует великое множество, но основных схем существует всего три.
Тандемное включение транзисторов (схемы Дарлингтона и Шиклаи)
Довольно часто возникает ситуация, когда необходимого коэффициента усиления одного транзистора не хватает. В этом случае транзисторы соединяют тандемно (то есть выходной ток первого транзистора является входным током для второго). Существует две схемы такого включения: схема Дарлингтона и схема Шиклаи. Отличие заключается лишь в том, что в схеме Дарлингтона используются транзисторы одинакового типа проводимости, а в схеме Шиклаи – разного типа проводимости.
Схема Дарлингтона
Схема Шиклаи
Данные пары – это просто два каскада эмиттерного повторителя. Иногда данные составные схемы транзисторов называют «супер-β» пары, так как они функционируют как один транзистор с высоким коэффициентом усиления.
Общий коэффициент передачи тока будет равен:
h21e(ОБЩ) = h21e(VT1)*h21e(VT2)
При использовании данных схем вполне возможна такая ситуация, когда нагрузка уменьшится до нуля (или некоторого минимального значения, близкого к нулю) или при повышении температуры базовый ток транзистора VT1 может стать равным нулю или даже переменить направление за счёт неуправляемого обратного тока коллектора. Во избежание запирания транзистора VT2 его режим следует стабилизировать с помощью резистора R1.
Величину сопротивления R1 можно определить по формуле:
R1 ≤ UE min/ICBO(VT1)
Параллельное включение транзисторов
Современные транзисторы позволяют реализовать электронные схемы расчитаные на широкие диапазоны изменений токов и напряжений, но в отдельных случаях для увеличения допустимой мощности рассеивания применяется параллельное включение транзисторов.
Схема параллельного включения транзисторов
Максимально допустимый ток протекающий через такой составной транзистор равен:
IKmax(общ) = IKmax(VT1) + IKmax(VT2)
При такой схеме включения транзисторов следует учитывать, что вследствие разброса параметров параллельно включённых транзисторов токи между ними распределяются неравномерно. Большая часть тока будет протекать через транзистор, имеющий больший коэффициент усиления.
Рассеиваемые транзисторами мощности можно выровнять включением в их эмиттерные цепи дополнительных симметрирующих резисторов с небольшими сопротивлениями. Так как на практике трудно подбирать такие сопротивление для каждого транзистора, в практических схемах в эмиттеры всех транзисторов ставят резисторы одного сопротивления.
Сопротивление симметрирующих резисторов R1 и R2 можно определить по формуле
R1 = R2 ≈ 0,5n/IK,
где n – число параллельно соединенных транзисторов
IK — ток проходящий через коллектор.
Такой способ связан с ухудшением усилительных свойств транзисторов, однако его достоинством является возможность получения мощного силового элемента при использовании относительно маломощных транзисторов.
Последовательное включение транзисторов
Во время работы силового транзистора на его переходе коллектор – эмиттер падает напряжение, представляющее собой разность входного и выходного напряжений. В отдельных случаях эта разность может превышать максимально допустимое напряжений коллектор – эмиттер транзистора, имеющегося в распоряжении. В этом случае необходимо использовать последовательное соединение нескольких транзисторов.
Схема последовательного включения транзисторов
Эквивалентный транзистор будет иметь следующие параметры:
UCEmax(общ) = UCEmax(VT1) + UCEmax(VT2)
Для симметрирования напряжений, которые будут падать на переходе коллектор – эмиттер транзисторов вводят симметрирующие резисторы R1 и R2 сопротивление, которых можно определить по формуле
R1 = R2 < UCEmax/2IB,
где IB – ток базы составного регулирующего транзистора.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Скажи спасибо автору нажми на кнопку социальной сети
Источник: https://www.electronicsblog.ru/silovaya-elektronika/sostavnye-tranzistory-sxemy-vklyucheniya.html
6.07. Специальные вопросы проектирования сильноточных источников питания
Рис. 6.10. Заземление питания в общей точке («Мекка» заземления).
Линии связей
Для источников питания с большим выходным током или источников прецизионного напряжения следует тщательно продумать линии соединений в самом стабилизаторе и между стабилизатором и его нагрузкой.
Если несколько различных приборов работают в качестве нагрузки одного стабилизатора, то все они должны присоединяться к источнику питания в точке, в которой подключен и датчик выходного напряжения стабилизатора, иначе флуктуации тока в одной из нагрузок повлияют на напряжение, поступающее к остальным нагрузкам (рис. 6.10).
В действительности хорошо иметь, как показано на схеме, общую точку заземления («Мекка») для нестабилизированного питания, опорного источника и т. д.
Проблему падения напряжения в соединительных проводах между источником питания и нагрузкой с большим током иногда можно решить путем вынесения измерительных элементов: клеммы, ведущие обратно к усилителю ошибки и опорному источнику, выводятся отдельно на клеммную колодку источника питания и могут или присоединяться к выходам стабилизированного напряжения прямо на этом месте (обычный способ), или от них могут быть проложены шины дальше и присоединены к нагрузке рядом с выводами напряжения питания (этот способ требует наличия четерых проводов, два из которых должны быть расчитаны на большие токи нагрузки). У большинства серийных источников питания имеется перемычка на задней стенке, соединяющей измерительные входы стабилизатора с его выходом, которую можно убрать для «вынесения» измерительных входов. Аналогично включаются четырехпроводные резисторы для измерения тока нагрузки при построении источников питания с точно удерживаемым постоянным значением тока в нагрузке. Более подробно об этом описано в разд. 6.24.
Параллельное включение проходных транзисторов
Если от источника питания требуются большие значения выходного тока, то приходится применять несколько проходных транзисторов, соединенных параллельно. При этом из-за разброса параметра приходится последовательно с эмиттером каждого из них ставить небольшой резистор, как показано на рис. 6.11. Эти резисторы приблизительно одинаково распределяют ток между проходными транзисторами.
Значение R выбирается таким, чтобы падение напряжения на резисторе было при максимальном значении выходного тока. Мощные ПТ могут быть соединены параллельно без дополнительных элементов благодаря отрицательному наклону зависимости их тока стока от температуры (рис. 3.13).
Рис. 6.11. Применение «балластных» эмиттерных резисторов при параллельном включении мощных биполярных транзисторов.
Область безопасной работы (ОБР)
Последнее замечание о мощных транзисторах: явление, известное как «лавинный пробой», ограничивает одновременно и ток, и напряжение, которое может быть приложено к любому конкретному транзистору, поэтому изготовителем указывается область безопасной работы (это совокупность диапазонов безопасных напряжений при данном токе в зависимости от времени его протекания).
Рис. 6.12. Область безопасной работы мощного биполярного транзистора (с разрешения Motorola, сечением выводов; ограничение (отдельные импульсы); ограничение лавинного пробоя.
Лавинный пробой связан с образованием «горячих точек» в транзисторных переходах и возникающем вследствие этого неравномерном распределении полного тока нагрузки. Этот факт накладывает на ток коллектора более жесткие ограничения, чем максимум рассеиваемой мощности (кроме случаев малых напряжений между коллектором и эмиттером). На рис. 6.12 показана область безопасной работы для широко применяемого транзистора .
При лавинный пробой ограничивает постоянный ток коллектора до величин меньших, чем позволяет максимальное значение рассеиваемой мощности . На рис. 6.13 показана область безопасной работы для двух подобных друг другу мощных высокочастотных транзисторов: биполярного и -канального МОП-транзистора .
При лавинный пробой ограничивает постоянный ток коллектора -транзистора значениями, соответствующими мощности рассеяния меньшей, чем максимально допустимая паспортная величина . Эта проблема не столь серьезна для коротких импульсов и фактически перестает просматриваться при длительности импульсов менее .
Обратите внимание на то, что МОП-транзистор не подвержен лавинному пробою; его ОБР ограничена максимально допустимым током (ограничение вносит сечение проводников, а их сопротивление для коротких импульсов тока выше, чем на постоянном токе), допустимой мощностью рассеяния и максимально допустимым напряжением затвор-исток.
Рис. 6.13. Сравнение ОБР мощного биполярного и -канального МОП-транзистора .
Более подробно об этом сказано в гл. 3, там где рассматриваются мощные транзисторы.
Источник: http://alnam.ru/book_shem1.php?id=160
1. Транзистор
Буквально сразу после появления полупроводниковых приборов, скажем, транзисторов, они стремительно начали вытеснять электровакуумные приборы и, в частности, триоды. В настоящее время транзисторы занимают ведущее положение в схемотехнике.
Начинающему, а порой и опытному радиолюбителю-конструктору, не сразу удаётся найти нужное схемотехническое решение или разобраться в назначении тех или иных элементов в схеме. Имея же под рукой набор «кирпичиков» с известными свойствами гораздо легче строить «здание» того или другого устройства.
Не останавливаясь подробно на параметрах транзистора (об этом достаточно написано в современной литературе, например, в [1]), рассмотрим лишь отдельные свойства и способы их улучшения.
Одна из первых проблем, возникающих перед разработчиком, — увеличение мощности транзистора. Её можно решить параллельным включением транзисторов (рис.1). Токовыравнивающие резисторы в цепях эмиттеров способствуют равномерному распределению нагрузки.
Оказывается, параллельное включение транзисторов полезно не только для увеличения мощности при усилении больших сигналов, но и для уменьшения шума при усилении слабых. Уровень шумов уменьшается пропорционально корню квадратному из количества параллельно включённых транзисторов.
Защита от перегрузки по току наиболее просто решается введением дополнительного транзистора (рис.2). Недостаток такого самозащитного транзистора — снижение КПД из-за наличия датчика тока R. Возможный вариант усовершенствования показан на рис.3. Благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, а значит, и рассеиваемую на нём мощность.
Для защиты от обратного напряжения параллельно выводам эмиттер-коллектор обычно включают диод, как, например, в составных транзисторах типа КТ825, КТ827.
Составной транзистор (рис. 4) имеет повышенное выходное сопротивление и значительно уменьшенный эффект Миллера благодаря каскодному включению полевого и биполярного транзисторов.
За счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор, изображённый на рис.5, имеет ещё более высокие динамические характеристики.
Единственное условие реализации такого транзистора — более высокое напряжение отсечки второго транзистора. Входной транзистор можно заменить на биполярный.
Одна из особенностей транзисторного ключа при изменяющейся нагрузке — изменение времени выключения транзистора. Чем больше насыщение транзистора при минимальной нагрузке, тем больше время выключения. Избежать глубокого насыщения можно путём предотвращения прямого смещения перехода база-коллектор. Наиболее простая реализация этой идеи с помощью диода Шоттки представлена на рис.6. На рис.7 изображён более сложный вариант — схема Бейкера.
При достижении напряжением на коллекторе транзистора напряжения базы «лишний» базовый ток сбрасывается через коллекторный переход, предотвращая насыщение. Далее показаны схемы ограничения насыщения относительно низковольтных ключей с датчиками тока базы (рис.8) и тока коллектора (рис.9).
При работе транзистора в ключевом режиме, когда требуется быстрое его переключение из открытого состояния в закрытое и обратно, иногда применяют форсирующую RC-цепочку (рис.10).
В момент открывания транзистора заряд конденсатора увеличивает его базовый ток, что способствует сокращению времени включения. Напряжение на конденсаторе достигает падения напряжения на базовом резисторе, вызванного током базы.
В момент закрывания транзистора конденсатор, разряжаясь, способствует рассасыванию неосновных носителей в базе, сокращая время выключения.
Повысить крутизну транзистора (отношение изменения тока коллектора (стока) к вызвавшему его изменению напряжения на базе (затворе) при постоянном Uкэ Uси)) можно с помощью схемы Дарлингтона (рис. 11).
Резистор в цепи базы второго транзистора (может отсутствовать) применяют для задания тока коллектора первого транзистора. Аналогичный составной транзистор с высоким входным сопротивлением (благодаря применению полевого транзистора) представлен на рис. 12.
Составные транзисторы, представленные на рис. 13 и 14, собраны на транзисторах разной проводимости по схеме Шиклаи.
Введение в схемы Дарлингтона и Шиклаи дополнительных транзисторов, как показано на рис. 15 и 16, увеличивает входное сопротивление второго каскада по переменному току и соответственно коэффициент передачи [2]. Применение аналогичного решения в транзисторах рис. 12 и 14 даёт соответственно схемы рис. 17 и 18, линеаризируя крутизну транзистора [3].
Широкополосный транзистор с высоким быстродействием представлен на рис. 19 [4]. Повышение быстродействия достигнуто в результате уменьшения эффекта Миллера аналогично рис.4 и 5.
«Алмазный» транзистор по патенту ФРГ представлен на рис. 20. Возможные варианты его включения изображены на рис.21 — 23. Характерная особенность этого транзистора-отсутствие инверсии на коллекторе. Отсюда и увеличение вдвое нагрузочной способности схемы рис.23.
Мощный составной транзистор с напряжением насыщения около 1,5 В изображён на рис.24. Мощность транзистора может быть значительно увеличена путём замены транзистора VT3 на составной транзистор (рис. 1).
Аналогичные рассуждения можно привести и для транзистора p-n-p типа, а также полевого транзистора с каналом p-типа. При использовании транзистора в качестве регулирующего элемента или в ключевом режиме возможны два варианта включения нагрузки: в цепь коллектора (рис.25-27) или в цепь эмиттера (рис.28-30).
Как видно из приведённых формул, наименьшее падение напряжения, а соответственно и минимальная рассеиваемая мощность — на простом транзисторе с нагрузкой в цепи коллектора. Применение составного транзистора Дарлингтона и Шиклаи с нагрузкой в цепи коллектора равнозначно. Транзистор Дарлингтона может иметь преимущество, если коллекторы транзисторов не объединять. При включении нагрузки в цепь эмиттера преимущество транзистора Шиклаи очевидно.
Литература:
1. Степаненко И. Основы теории транзисторов и транзисторных схем. — М.: Энергия, 1977.2. Патент США 4633100: Публ. 20-133-83.3. А.с. 810093.
4. Патент США 4730124: Публ.22-133-88. — С.47.
1. Увеличение мощности транзистора
Резисторы в цепях эмиттеров нужны для равномерного распределения нагрузки; уровень шумов уменьшается пропорционально квадратному корню из количества параллельно включённых транзисторов.
Рис. 1.
2. Защита от перегрузки по току
Недостаток-снижение КПД из-за наличия датчика тока R.
Рис. 2.
Другой вариант — благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, и на нём будет рассеиваться меньшая мощность.
Рис. 3.
3. Составной транзистор с высоким выходным сопротивлением
Из-за каскодного включения транзисторов значительно уменьшен эффект Миллера.
Рис. 4.
Другая схема — за счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор имеет ещё более высокие динамические характеристики (единственное условие — второй транзистор должен иметь более высокое напряжение отсечки). Входной транзистор можно заменить на биполярный.
Рис. 5.
4. Защита транзистора от глубокого насыщения
Предотвращение прямого смещения перехода база-коллектор с помощью диода Шоттки.
Рис. 6.
Более сложный вариант — схема Бейкера. При достижении напряжением на коллекторе транзистора напряжениябазы «лишний» базовый ток сбрасывается через коллекторный переход, предотвращая насыщение.
Рис. 7.
5. Схема ограничения насыщения относительно низковольтных ключей
С датчиком тока базы.
Рис. 8.
С датчиком тока коллектора.
Рис. 9.
7. Составной транзистор
Схема дарлингтона.
Рис. 11, 12.
Схема Шиклаи.
Рис. 13, 14.
Схемы Дарлингтона и Шиклаи с дополнительными транзисторами (нужны для увеличения входного сопротивления второго каскада по переменному току,и соответственно коэффициента передачи).
Рис. 15, 16.
То же самое для схем Дарлингтона и Шиклаи с полевыми транзисторами на входе.
Рис. 17, 18.
9. «Алмазный» транзистор
Особенность этого транзистора-отсутствие инверсии на коллекторе.
Рис. 20.
Возможные варианты его включения.
Рис. 21, 22.
Схема с увеличенной вдвое нагрузочной способностью.
Рис. 23.
11. Использование транзистора в качестве регулирующего элемента или в ключевом режиме
Включение нагрузки в цепь коллектора.
Рис. 25, 26, 27.
Включение нагрузки в цепь эмиттера.
Рис. 28, 29, 30.
Источник: http://zpostbox.ru/az.htm
Подключение транзисторных выходов ко входу контроллера — блог СамЭлектрик.ру
Схема подключения выхода NPN ко входу PNP.
Написать эту статью меня побудил вопрос читателя.
Он спрашивал, как подключить два прибора с транзисторным выходом на один вход контроллера. В результате получился ответ, достойный того, чтобы оформить его в статью.
Эта статья перекликается с другой моей статьёй – про подключение датчиков с транзисторным выходом. Там – вся теория про НО, НЗ, PNP, NPN и подобные вещи.
Также там описан способ переделки транзисторной логики PNP в NPN и обратно, который применяется в этой статье.
Итак,
Вопрос читателя:
Александр, добрый день! Нужна Ваша помощь в схеме подключения к контроллеру Siemens ET 200SP ионизаторов Vessel N-1. Речь идет о NPN датчике с ОК.
Задача стоит следующая: на одном рабочем месте два ионизатора включаются по сигналу оптического датчика через реле. К ним же через реле подается воздух с пневмораспределителя. В случае неисправности одного из ионизаторов ( или обоих “ИЛИ”) на вход контроллера (DI) должен приходить сигнал +24V. От ключей ионизатора ( ALM-COM).
Т.к. рабочих мест много, то от 2-х ионизаторов- один сигнал. C одним PNP транзистором проблем бы не было. Но так питание на ионизаторы подается не постоянно, а от сигнала оптического датчика,то сигнал неисправности может быть только +24V.
Необходимые схемы и мануалы прилагаю.
Файлы, присланные читателем:
Схема входного модуля контроллера:
DI 16x24VDC ST. Входы контроллера, на один из которых приходит сигнал с двух выходов
Что видно из схемы контроллера? Все входы – типа PNP, то есть, входы будут активны, когда на них поступает напряжение +24VDC. Соответственно, для этого входные ключи (это могут быть и датчики, и кнопки, и любые контакты – контроллеру всё равно) должны замкнуться и пропустить через себя ток. В случае, если ключ транзисторный, он должен быть проводимости типа PNP, то есть, коммутировать положительный полюс источника питания.
Кстати, по контроллеру у меня есть ещё одна крутая статья – Ремонт станка на контроллере.
Выход устройства:
Ионизатор – схема подключения выходов
Я не знаю, что делает ионизатор (вероятно, ионизирует)). Собственно, нам это знать не особо нужно, пусть об этом думают технологи. Нас интересует единственный информационный выход – ALM (Alarm), который должен подключиться ко входу контроллера. В приведенном куске инструкции внизу показаны примеры подключения – везде используется схема ОЭ (общий эмиттер), где эмиттер всегда подключен к минусу, который коммутируетя транзистором типа NPN и подает этот минус на нагрузку. А плюс к нагрузке подключен постоянно.
Положение осложняется двумя факторами:
- Вход контроллера и выход ионизатора не подходят друг другу. Для контроллера нужен PNP, а выход имеем NPN.
- Нужно подключить два выхода ионизатора на один вход. Вход запрограммирован, и его никак не изменить. Если бы можно было залезть в программу, можно было бы и логику работы изменить, и каждый выход посадить на свой вход, и логику ИЛИ реализовать программно.
Вот как попытался составить схему читатель:
Схема подключения с оптическим датчиком, составленная читателем
Оптический датчик (кстати, с транзисторным выходом PNP) к делу не относится, он подает питание на ионизаторы через реле К1 при появлении изделия.
Два выхода ALM, обозначенные вопросиками, нам предстоит подключить к контроллеру, который скромно расположился в нижнем правом углу рисунка.
Мой ответ по параллельному подключению:
В случае неисправности одного из ионизаторов (согнал ALM становится активным) открывается транзистор на выходе оптопары.
Нужно, чтобы при неисправности любого или нескольких ионизаторов становился активным нужный вход контроллера.
Так как вход один, нужна схема ИЛИ.
А что там свежего в группе вк самэлектрик.ру?
Активный уровень контроллера +24В. Точнее, +5…..+30V. Активный сигнал аварии ионизатора – открытый переход эмиттер-коллектор npn транзистора.
Исходя из этого, схема подключения будет такой:
Схема итог. Два выходных транзистора типа NPN подключены параллельно к одному входу PNP
Коллекторы транзисторов (вых.4 ALM) подключаем к напряжению +24В (хотя, производитель туда рекомендует подключать нагрузку!). Эмиттеры – через резистор на вых 1 или 5 (GND). Резисторы R1, R2 нужны для обеспечения рабочего режима транзисторов, хотя их нет в схеме производителя.
Кручу-верчу, подключить хочу 😉
Получаем включение выходных транзисторов по схеме общий коллектор, в которой выход на эмиттере.
Для понимания, схему можно преобразовать к классическому виду (я привязался к расположению клемм реального устройства, поэтому немного путаная схема получилась):
Схема включения транзистора Общий Коллектор, классический вид
На эмиттере будет потенциал GND, когда транзистор закрыт (нет аварии ионизатора), и потенциал +24В, когда происходит активизация выхода ALM (авария ионизатора).
Чтобы соединить транзисторные каскады параллельно и подключить к одному входу контроллеру, надо их подключать через диоды, это исключит их взаимное влияние.
Точка подключения всех диодов подключается ко входу контроллера. Диод(ы) открывается, когда открывается транзистор, при этом 24В проходит через переход коллектор-эмиттер, далее через диод на вход контроллера.
Рекомендуется для стабильной работы вход контроллера зашунтировать резистором 100 кОм. Без него если схема работать и будет, то за надежность я не отвечаю. Чтобы диод работал, нужно, чтобы через него протекал ток. А ток входа контроллера ничтожно мал. Поэтому 100 кОм и обеспечивает этот ток.
Получается, на резисторе R3 (а значит, на нужном входе контроллера) у нас присутствует напряжение, которое позволяет контроллеру работать в штатном режиме.
Ещё пара слов по транзисторам, датчикам и контроллерам
Чтобы нормально функционировать в мире датчиков контроллеров, входов, выходов, нужно четко понимать, какой уровень сигнала активный, какой- пассивный, как работает тот или иной выход или вход. Бывает, что активный уровень контроллера – 0В, при этом контакты датчика замкнуты, и он в то же время – не активен.
Кроме того, понятия “аналоговое”, “дискретное”, “цифровое” – весьма условны и перетекают плавно друг в друга.
Источник: https://SamElectric.ru/promyshlennoe-2/parallelnoe-soedinenie-tranzistornyh-vyhodov.html