Люстра на светодиодах греется трансформатор

Содержание

Замена галогеновых ламп G4 в люстре. Трансформатор для светодиодной люстры

Люстра на светодиодах греется трансформатор

СветодиодТрансформатор для светодиодной люстры

Имеется люстра на 12+6 галогеновых ламп с цоколем G4 мощностью 20 вт каждая, с пультом дистанционного включения (возможность раздельного управления включением).Хотелось бы заменить галогеновые лампы на LED. Подскажите:1. Какой мощности подбирать LED лампы цоколь G4?2. Как рассчитать и выбрать для них трансформатор?3. Будет ли после замены работать дистанционное управление?

Выбор замены.

Вместо 20-ваттных галогеновых можно взять вот эти лампы: K15-24S по 3.2 ватта каждая. Если, конечно, они физически поместятся в Ваш светильник. Если же великоваты, посмотрите на другие похожие лампы с цоколем G4, но меньшей длины или диаметра. Однако, они будут меньшей мощности и меньшей яркости. Тем не менее, лампу на 2 ватта вполне можно ставить вместо 20-и ваттной галогеновой, будет чуть темнее, но почти всегда это не критично.

По поводу трансформатора.

Его нужно обязательно менять. У Вас может стоять и два трансформатора — нам встречались подобные люстры.

Если их два, то потребуются трансформатор на 50 ватт для большей цепи и на 25 ватт для меньшей. Если же трансформатор один, то нужно ставить по крайней мере ватт на 75, например, вот такой: PS100W. Обратите внимание, что трансформаторы для светодиодных ламп гораздо больше по размерам своих старых электронных аналогов, для них нужно заранее спланировать место!

Дистанционное управление люстрой.

Будет ли оно работать, зависит от способа подключения электронного управления — до трансформаторов (в этом случае их два, а блок управляет сетью 220 вольт) или после них/него (блок управляет уже пониженным напряжением и от него же питается).

По нормальной логике должен быть первый вариант, а в Вашей люстре стоят два трансформатора. Если так, то дистанционное управление будет работать по-прежнему, т.к. замена ламп и трансформаторов никак его не касается.

Во втором случае дистанционное управление, скорее всего, работать не будет, т.к. тип входного тока станет постоянным вместо переменного. Более того, блок ДУ может мешать работе трансформатора, и в этом случае его лучше вообще демонтировать. Хотя не исключен вариант очень умного блока, способного работать от постоянного тока, и тогда с дистанционным управлением будет всё в порядке.

Также возможно, что блок ДУ вместе с трансформатором представляют единое неделимое целое. В этом случае можно либо отказаться от дистанционного управления, либо (уже без нашей гарантии) не менять трансформатор вовсе, а попробовать установить вот такую модель светодиодной лампы: K15-24Sw. Она рассчитана на переменный или постоянный ток до 30 вольт.

Эта лампа не предназначена для электронных трансформаторов, но очень часто нормально с ними работает. Проверить это просто, но придется заменить все галогеновые лампы на эту модель. Процедура такая: меняем все лампы, включаем, зажимая между пальцами одну из них. Лампа не должна нагреваться. Если что-то не так, она нагреется очень сильно буквально за секунды (10-40) после включения.

Если она не будет перегреваться, выключаться, мигать, то это будет самым простым способом замены галогеновых ламп. Если светодиодные лампы не загорятся вообще, будут тлеть, мигать или гаснуть через минуту-другую, то можно попробовать оставить в каждой цепи по одной галогеновой лампе — это, скорее всего, решит проблему. Для этой цели можно использовать маломощные галогенки, ватт по 5-10.

Напоминаем, что на подключение без замены трансформатора не распространяется наша гарантия, так как светодиодные лампы с цоколем G4 не предназначены для электронных блоков питания. Хотя во многих случаях такой способ оказывается единственно возможным.

www.tauray.ru

Администратор [875]

более года назад

Из собственной практики — можно, без проблем. При этом, конечно, надо использовать 12v лампы под постоянный ток, т.к. трансформатор под ленту будет тоже выдавать постоянный ток. Знаю, такие лампы есть как минимум у производителя Pulsar. Плюс, уверен, в последнее время таких производителей должно было появиться еще больше.

Обратите также внимание, что лампы (возможно, это зависит от производителя) могут просадить напряжение на ленте. В моем случае при восьми 12v спотах, подключенных параллельно к ленте, получалось так, что на ленте уже было около 9-10V вместо ожидаемых 12V. И, соответственно, из-за этого светимость ленты существенно снижалась.

система выбрала этот ответ лучшим

в избранное ссылка отблагодарить Старый мастер [419]

более года назад

Подавляющее большинство светильников, неважно с каким источником света (светодиодный,

люминисцентные лампы, а также галогенные или простые лампы накаливания) рассчитаны для питания переменным током. Поэтому ни трансформатору, ни лампам, подобное «смешивание» источников света никак не навредит.

Другой вопрос — хватит ли мощности самого трансформатора для питания всех осветительных приборов, которые вы собираетесь подключить.

Смотрите на указанную на трансформаторе указанную мощность и сравните сумму ватт, которую будут потреблять все ваши светильники.

Если она превышает мощность трансформатора, то есть 2 выхода — либо уменьшить количество светильников, либо искать трансформатор помощнее.

в избранное ссылка отблагодарить

Администра­тор [875]

Думаю, автор вопроса имел в виду 12v трансформатор в постоянный ток, а также использование этого постоянного 12v тока для одновременной запитки разных потребителей (ленты и точечных светильников).

Поэтому ваша фраза про «Подавляющее большинство светильников … рассчитаны для питания переменным током» в контексте заданного вопроса может только ввести в заблуждение.

— более года назад

Старый мастер [419]

Уважаемый администратор! Во первых выдающий постоянный ток прибор называется ВЫПРЯМИТЕЛЬ, а не просто транксформатор — это первое. Второе — понижающие бытовые трансформаторы, используемые для бань и подвалов выдают ПЕРЕМЕННЫЙ ток и напряжение 12, 24 и 36 вольт! Я практик и таких приборов очень много монтировал. Так что в заблуждение вводите ВЫ! — более года назад

Sanyaburyj [17]

более года назад

Стоит разделять источники света по типу! Если в точечных светильниках стоят галогенки, то для них достаточно понижающего трансформатора не важно выпрямляющий он или переменный, а вот светодиодные источники света необходимо подключать через драйвер импульсного типа, иначе долго они не прослужат! В то же время не рекомендуется подключать к таким драйверам галогенки и простые лампы накаливания- слишком большая нагрузка на полевики в схеме. К тому же при включении и выключении источников света с нитью накаливания наблюдается всплеск напряжения которого светодиоды просто не выдержат. Вывод: подключать лучше раздельно!

в избранное ссылка отблагодарить

fyodor [4.3K]

Как я понимаю, драйвер (блок питания) импульсного типа содержит в себе понижающий трансформатор? А если точечные светильники будут светодиодными? Тогда будет ли нормальным через драйвер импульсного типа подключать и ленту LED и светильники. Проблема в том, что у меня маловато места для размещения доп устройств. Возможно вмещу и то и другое, но хотелось бы по минимуму. — более года назад

Sanyaburyj [17]

Если всё на светодиодах то проблем никаких нет, единственное что следует понимать это отличие драйвера для светодиодов от импульсного блока питания, принцип работы у них один, но светодиоды это потребители тока и именно поэтому основной характеристикой драйвера является выходной ток и мощность исходя из этих данных выводится максимальное напряжение которое будет на выходе.

Для блока питания основной параметр- выходное напряжение тут выходной ток будет зависеть от мощности потребителя и может превышать потребляемый светодиодом ток, а это сказывается на долговечности работы светодиода. Рассмотрим простой пример: подключаем 3-х ваттный светодиод к импульсному блоку питания 12V и получаем на светодиоде аж 4А, а производителем предусмотрен максимальный ток всего 700мА.

От 4А светодиод сгорит как спичка, именно поэтому следует выбрать для такого светодиода драйвер с максимальным током 700мА и мощностью 3 ватта, делим 3 ватта на 0.7А и получаем примерно 4.2В напряжения на выходе драйвера, тут вам и незначительная экономия и щадящий режим работы светодиода. Аналогично подбирается драйвер и для светодиодных лент.

И кстати драйвера довольно компактные и могут производиться как в корпусе так и просто в виде печатной платы с вводом и выводом для подключения. — более года назад

fyodor [4.3K]

Как я понял, для питания светодиодов рекомендуется не трансформатор или блок питания с трансформатором, а именно драйвер. Если, проще говоря, трансформатор формирует на выходе определенной величины напряжение, то драйвер — величину тока. При этом выходит, что на светодиод подается пониженное (экономное) напряжение.

Не будет тогда он светить бледно? Наверное, нужно подбирать параметры драйвера — в зависимости от нагрузки.. Я создам по этому поводу отдельный вопрос..И ведь привычно звучит, когда говорят, что для светодиодов нужны контроллер и трансформатор. А про драйвер впервые слышу.

Где собака зарыта? 🙂 — более года назад

Sanyaburyj [17]

В идеале лучше использовать драйвер. Свечение светодиода зависит только от тока поэтому светить будет в полную яркость, при увеличении тока увеличивается яркость , но и нагрев становится бешеным, а для светодиода это очень плохо- быстро выходит из строя, как в принципе и любой другой полупроводник.

драйверов в продаже хватает, под любые параметры, продаются в любом магазине со светодиодной продукцией.Главный плюс драйвера- повышенная защита светодиода от перегрузок.

да и производятся они именно для светодиодной продукции, а этим всё сказано, хотя есть драйвера и для галогенок, но они немного другими характеристиками обладают — более года назад

проф [909]

более года назад

Да лишь бы хватало мощности трансформатора.

в избранное ссылка отблагодарить

Знаете ответ?

www.remotvet.ru

 > Статьи >

Трансформаторы для светодиодных лент

В связи с тем, что светодиодное освещение занимает все большую часть светотехнического рынка, попеременно с этим возникает немаловажный вопрос обеспечения светодиодных лент трансформаторами. Если катушечный  трансформатор уже встроен в блок питания светодиодных лент, то прибор можно эксплуатировать незамедлительно. В ином случае перед потребителем возникает вопрос выбора и приобретения понижающего трансформатора, который обеспечит необходимый постоянный ток светодиодам и защитит их от скачков напряжения в сети.

Каталог трансформаторов (блоков питания):

Какие трансформаторы лучше использовать для светодиодов

Не все светодиодные световые приборы рассчитаны на питание от сети 220 В. Например, наиболее востребованные лампы работают от источника питания с напряжением 12 или 24 В и не смогут функционировать без дополнительного подключения трансформатора.

Если для галогенных светильников не имеет значения, какой трансформатор к ним подключить – работающий на постоянном или переменном токе, то для светодиодов подходит только постоянный ток.

В настоящее время для светодиодного освещения разработаны специальные трансформаторы, которые способны обеспечить постоянное равномерное напряжение на выходе. С ними светодиодные лампы, смогут излучать стабильно ровный пучок направленного света. В крайнем случае допустимо использование обычного электромагнитного или электронного трансформатора для светодиодных лент. Однако при этом вам придется дополнительно подключать стабилизатор для светодиодной ленты или смириться с тем, что лампа будет периодически мигать.

Подключение светодиодной лампы при помощи обычного трансформатора

Светодиоды с маркировками MR16, MR11 или G4, как правило, неплохо светят, если их подключить к любому блоку питания, обеспечивающему напряжение 12 В.

С электромагнитными катушечными трансформаторами обычно не возникает сложностей, в то время как электронные для успешной работы нуждаются в дополнительных условиях.

Электронным трансформаторам для светодиодных лент нужна более чем минимальная нагрузка, а при небольшой мощности диодов это обеспечить не так просто. Приходится прибегать к некоторым ухищрениям вроде добавления к сети еще некоторого количества светодиодных или каких-либо других светильников.

Специальные трансформаторы для светодиодных светильников

Как уже было отмечено выше, большинство светодиодов, использующихся для осветительных приборов, нуждается в постоянном токе напряжением 12 В. Подключать напрямую светильники к сети 220 В категорически запрещено – оборудование выйдет из строя.

При выборе трансформатора для светодиодных лент нужно обратить внимание на характеристики: суммарная мощность, напряжение и герметичность корпуса. Такие трансформаторы рассчитаны на работу в разных температурных условиях, обеспечивают безопасную работу светильников.

Электронные трансформаторы торговых марок Bioledex или Relco, разработанные специально для светодиодных светильников и лент, обладают достаточной защитой от внешних воздействий и необходимыми техническими возможностями, благодаря которым ваше световое оборудование сможет исправно служить долгие годы.

Всё для светодиодного освещения Вы найдете в разделах каталога:

www.mir-svetodiodov.ru

Источник: https://les66.ru/svetodiod/transformator-dlya-svetodiodnoj-lyustry.html

Трансформатор для галогенных ламп. Разновидности, выбор, схема подключения

Люстра на светодиодах греется трансформатор

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Речь в сегодняшней статье пойдет о расчете и выборе понижающего трансформатора для галогенных ламп, а также о схемах его подключения.

Галогенные лампы нашли широкое применение для освещения разного вида помещений. Они обладают идеальной цветопередачей и имеют постоянную яркость на протяжении всего периода работы. Срок службы таких ламп в 3-4 раза дольше (до 2-4 тыс. часов), чем у ламп накаливания.

Всего существует два типа галогенных ламп:

  • на переменное напряжение 220 (В)
  • на переменное напряжение 6, 12 и 24 (В)

Первый тип ламп включаются в сеть 220 (В) напрямую (непосредственно) без применения каких-либо понижающих трансформаторов.

Вот фотография галогенной лампы JCDR на 220 (В) мощностью 35 (Вт) с цоколем GU5.3 (значение 5.3 — это расстояние между выводами в миллиметрах).

Вот еще пример «галогенки» ЭРА на 220 (В) мощностью 35 (Вт) с цоколем GY6.35.

Для подключения второго типа ламп необходим понижающий трансформатор 220/6 (В), 220/12 (В) и 220/24 (В) соответственно.

В данной статье мы более подробно остановимся именно на этих типах галогенных ламп.

Напомню Вам, что применение ламп на 6, 12 или 24 (В) обеспечивает дополнительную электробезопасность. Почитайте статью про требования к светильникам и розеткам, установленных в ванной комнате или в помещении парилки.

Электромагнитный или электронный трансформатор? Что выбрать?

На сегодняшний день понижающие трансформаторы делятся на 2 типа:

  • электромагнитные (тороидальные)
  • электронные (импульсные)

Электромагнитные трансформаторы для галогенных ламп достаточно надежны и не очень дорогие по стоимости.

Их принцип работы основан на электромагнитной связи первичной и вторичной обмоток (катушек).

Также они имеют весомые недостатки — это значительный вес (массу) и габаритные размеры, поэтому их применение несколько ограничено. Посмотрите сами. Электромагнитный трансформатор 220/12 (В) HBL-250 имеет вес около 3,2 (кг).

Хочу сказать еще о двух их недостатках — это нагрев во время работы и чувствительность к скачкам напряжения, что отрицательно сказывается на сроке службы галогенных ламп.

Вес и габаритные размеры электронных трансформаторов в несколько раз меньше, чем у электромагнитных. Они имеют стабилизированное напряжение на выходе и особо не нагреваются во время работы (по сравнению с электромагнитными).

Некоторые типы электронных трансформаторов обладают встроенной защитой от короткого замыкания, перегрева, плавным пуском, что значительно увеличивает срок службы галогенных ламп, поэтому они и  нашли более широкое применение, особенно для светильников и люстр для натяжных и подвесных потолков, корпусной мебели и т.п.

Электронные трансформаторы имеют совершенно другой принцип работы, основанный на преобразовании электрической энергии за счет электронных устройств и полупроводниковых приборов.

Электронный трансформатор запрещено включать без нагрузки в связи с особенностями его внутренней схемы. Вы наверное замечали, что на корпусах некоторых моделей указаны два значения мощности: минимальная и максимальная. Например, 40-105 (Вт). Так вот общая мощность ламп, питающихся от этого трансформатора, должна быть не меньше 40 (Вт).

Как рассчитать мощность трансформатора для галогенных ламп?

Итак, Вы определились с типом понижающего трансформатора. Теперь нужно выбрать его мощность. В продаже имеются трансформаторы с разными значениями мощностей. Покупать трансформатор с завышенной мощностью совсем не целесообразно, или наоборот, можно купить с недостаточной мощностью, что вызовет его перегруз и выход из строя.

Рассмотрим на реальном примере.

Предположим, что на кухне необходимо установить 6 галогенных точечных светильников напряжением 12 (В) мощностью 35 (Вт). Общая мощность всех ламп составит 210 (Вт). Введем коэффициент запаса (надежности), увеличив значение 210 (Вт) на 10-15%. Получаем мощность, равную 231 (Вт). Таким образом, нам нужно приобрести понижающий трансформатор 220/12 (В) мощностью не ниже 231 (Вт). Приходим в магазин, смотрим ближайшее большее значение и покупаем трансформатор на 250 (Вт).

Вот стандартный ряд номинальных мощностей: 50, 60, 70, 105, 150, 200, 250, 300, 400 (Вт).

Схема подключения галогенных ламп. Вариант 1

Вот схема подключения галогенных ламп для нашего варианта:

Схема подключения трансформатора на стороне 220 (В) осуществляется через одноклавишный выключатель. Отходящие от распределительной коробки оранжевый и синий проводники (читайте о цветовой маркировке проводов) подключаются на первичные клеммы  трансформатора L и N «Input» («Вход»).

На стороне 12 (В) все галогенные лампы подключаются на вторичные клеммы трансформатора «Output» («Выход») отдельными медными проводами (кабелями) сечением не менее 1,5 кв.мм и только параллельно. Сечение и длина питающих проводов должны быть одинаковыми, иначе яркость свечения «галогенок» будет отличаться друг от друга.

Если клеммных зажимов на трансформаторе не достаточно для подключения 6 ламп, то можно применить специальные соединительные клеммы.

Длина проводов (кабелей) между трансформатором и галогенными лампами должна быть в пределах от 1,5 до 3 (м). Почему? Если это расстояние увеличить, то в линии возникнут большие потери (провод начнет греться), т.к. при одной и той же мощности лампы и разных питающих напряжениях (220 и 12 В) ток в проводах будет отличаться в десятки раз, соответственно, уменьшится яркость ламп.

Если по каким-то причинам длина от трансформатора до лампы превышает 3 метров, то необходимо увеличивать сечение питающего провода (кабеля).

Подключение галогенных светильников. Вариант 2

Можно сделать немного по-другому. Разобьем 6 светильников на 2 группы, т.е. в первой группе — 3 штуки, и во второй группе — 3 штуки.

Для каждой группы установим свой понижающий трансформатор 220/12 (В). Такое решение будет целесообразно, т.к. при выходе из строя одного из понижающего трансформаторов, вторая группа светильников будут продолжать работать, а покупка нового трансформатора обойдется несколько дешевле, нежели покупать один общий трансформатор, как в первом примере — ведь с ростом мощности пропорционально ей увеличивается и цена на товар.

Общая мощность каждой группы составит 105 (Вт). Аналогично, введем коэффициент запаса (надежности), увеличив значение 105 (Вт) на 10-15%. Получаем мощность, равную 115,5 (Вт).

Таким образом, нам нужно приобрести два понижающих трансформатора 220/12 (В) мощностью не ниже 115,5 (Вт). Приходим в магазин, смотрим ближайшее большее значение и покупаем трансформатор на 150 (Вт).

Вот схема для варианта 2.

Рекомендую Вам каждый понижающий трансформатор запитывать отдельными проводами (кабелями) и соединять их в распределительной коробке (читайте о всех разрешенных способах соединения проводов). Этим советом некоторые пренебрегают и соединяют провода прямо под потолком. Так делать не нужно, т.к. все места соединений проводов должны иметь постоянный и беспрепятственный доступ для обслуживания и ремонта (ПУЭ, п.2.1.23).

Если Вы хотите управлять каждой группой ламп отдельно, то используйте для этого двухклавишный выключатель.

Внимание!!! Применять диммер совместно с электронными (импульсными) понижающими трансформаторами не рекомендуется, т.к. он нарушает правильную работу электронного преобразователя, что в итоге скажется на уменьшении срока службы галогенных ламп. 

Рекомендации по месту установки понижающего трансформатора

В конце статьи я хочу дать Вам несколько рекомендаций по установке трансформаторов для галогенных ламп.

Я уже говорил в начале статье, что понижающие трансформаторы для галогенных ламп во время работы могут достаточно сильно нагреваться, поэтому их необходимо устанавливать на негорючей поверхности.

Расстояние от трансформатора до «галогенки» должно составлять не менее 20 (см).

Для лучшей вентиляции трансформатор рекомендуется устанавливать в закрытой полости (нише) объемом не меньше 12 литров, иначе необходимо уменьшить его нагрузку.

Источник: http://zametkielectrika.ru/transformator-dlya-galogennyx-lamp/

Переделка китайской люстры с пультом ДУ

Люстра на светодиодах греется трансформатор

Реальная практика ремонта электроники

В настоящее время стали довольно популярны китайские люстры с пультом ДУ. Но, к сожалению, их надёжность оставляет желать лучшего.

Здесь я покажу на реальном примере, как можно доработать такую люстру. Сделать её более долговечной, надёжной и безопасной.

Данный материал будет полезен всем тем, кто дружит с электроникой. Здесь нет пошаговых инструкций, но в то же время показан наглядный пример того, как можно улучшить уже имеющуюся люстру. Умение паять и разбираться в схемах очень приветствуется, так как даже такой, казалось бы, простой материал оказалось трудно объяснить простым языком. Итак, начнём.

Принесли на ремонт китайскую люстру Sneha 85653/9+45A. «Sneha» созвучно с одним похабным словом, но, если к этому изделию приложить прямые руки, то получится «конфетка».

Владелец обнаружил оплавление корпуса одного из электронных блоков люстры и поэтому решил снять её из-за боязни возгорания. Просили сделать что-нибудь, чтобы люстру можно было эксплуатировать без опаски.

В процессе диагностики выяснилось, что люстра некорректно реагирует на команды с пульта. О том, как устранить эту неисправность, я уже подробно рассказывал тут.

После того, как беспроводной переключатель (Wireless Switch Y-7E) был починен, люстра стала работать исправно. Казалось бы, полдела сделано. Осталось решить проблему с LED Transformer'ом, который очень сильно грелся, и люстру можно отдавать. Но, что-то подсказывало, что это лёгкое и недолговечное решение.

Была поставлена задача доработать люстру, а, именно, полностью избавиться от источников питания на балластном конденсаторе, которые используются для питания беспроводного переключателя Y-7E и светодиодного светильника.

Для наглядности начеркал простенькую структурную схему, на которой показаны основные блоки и узлы люстры с ПДУ. Красными крестиками отметил те блоки, от которых в процессе переделки необходимо избавится или заменить.

Так как подписи к блокам делал на английском (так короче), то кратко расскажу о каждом:

Wireless switch — Беспроводной переключатель. В нашем случае это модель Y-7E с тремя каналами управления (3 way).

Электромагнитные реле (Relay), которые и включают нагрузку легко обнаружить внутри корпуса этого блока. RF — это радиоприёмная часть, которая принимает посылки от ПДУ. На печатной плате Wireless switch этот блок выполнен отдельно и выглядит так.

Decoder — это микросхема дешифратор HS153SPJ. Она декодирует посылки с пульта ДУ и включает/выключает соответствующее реле.

Power Supply — это источник питания. В данном случае он собран по схеме источника питания с гасящим (балластным) конденсатором. Это самая ненадёжная часть всей схемы, которая является причиной некорректной работы люстры спустя 1,5 — 2 года эксплуатации. Об этом мы ещё поговорим.

LED Transformer. Такое название ему, по-видимому, придумали для краткости. Могут обзывать и LED Driver, хотя этот блок состоит из обычного выпрямительного диодного моста и балластного конденсатора, который «гасит» излишки сетевого напряжения 220V, понижая его до нужного уровня. Тоже является ненадёжной частью схемы. Из-за такого схемотехнического решения светодиоды в люстре выходят из строя очень быстро.

Вот схема этого блока. Сведена с печатной платы вручную.

А вот и начинка. Не трудно заметить, что резистор (показан стрелкой) очень сильно греется.

Данный резистор, служит для ограничения тока через светодиоды. Именно из-за него и оплавился пластиковый корпус LED Transformer'а. Обратите на надпись «LED Driver» на корпусе. Как уже говорил, драйвером здесь и не «пахнет». Вместо него применена простейшая схема и минимум деталей.

Чтобы оплавить такой пластик нужна температура градусов 100~1500С, а то и больше. Становится страшно, когда такое чудо техники висит под потолком!

Чтобы избавится от этого блока, я решил заменить его обычным блоком питания с понижающим трансформатором. Об этом я ещё расскажу.

LED Lamp. Эту часть люстры я называю светодиодный светильник, хотя это просто несколько десятков светодиодов, которые соединены по определённой схеме.

В той люстре, которая оказалась в моих руках, светильник состоял из 45 светодиодов. Но, к моему удивлению, они не были соединены последовательно, как это обычно делается в китайских люстрах. На каждый из 9 плафонов люстры приходилось по 5 светодиодов, включенных последовательно.

Затем эти 9 веток соединялись параллельно и подключались к LED Transformer'у. Вот схема соединений для тех, кто в них сечёт.

Как уже упомянул, светодиодный светильник во многих люстрах собирается по другой схеме.

Все светодиоды в ней соединены последовательно, друг за другом. Их количество может достигать 50-ти и более штук. Благодаря этому, в LED Transformer'е для ограничения тока устанавливается резистор меньшего сопротивления, а ток, который протекает через него, не превышает 20~30 mA. Из-за этого на ограничительном резисторе выделяется небольшая мощность, которая не приводит к его чрезмерному нагреву.

В данной же люстре светодиоды включены параллельно по 5 штук на каждую ветку. Через каждую ветку протекает ток в 20~30 mA. А так как при параллельном включении ток разделяется, то суммарный ток, потребляемый всеми светодиодами светильника, уже составляет 180~270 mA.

Кроме того, резистор гасит куда большее напряжение, так как при такой схеме соединений, напряжение питания светодиодного светильника составляет 15…16V.

При последовательном соединении большая часть сетевого напряжения «падает» на светодиодах, так как их количество велико, и все они включены последовательно.

Судя по всему, такая реализация соединения светодиодов и привела к сильному нагреву резистора в LED Transformer'е и его корпус начал оплавляться.

Electronic Converter — Электронный трансформатор. Служит для питания галогенных ламп. Как видим по схеме их здесь два. Один блок мощностью 105 Вт питает 5 параллельно включенных галогеновых ламп G4 на 12V и мощностью 20 Вт каждая. Другой блок на 80 Вт служит для питания 4 галогеновых ламп G4.

Электронные трансформаторы и галогенные лампы я называю галогенным светильником. Эту часть люстры я трогать не буду, так как она исправно работает.

Подбираем блок питания

Для питания беспроводного переключателя подойдёт блок питания с выходным напряжением 12~13V и максимальным током нагрузки 0,1~0,15A. На самом деле ток потребления приёмного блока составляет около 0,1A (я намерил 93,3 mA), и это только в том случае, если все 3 реле включены. Каждое из электромагнитных реле потребляет ток около 27~30 mA.

Когда все реле выключены, то беспроводной переключатель потребляет смешные 11,2 mA.

В качестве блока питания лучше всего применить малогабаритный AC/DC-адаптер питания (Power Adapter) от какого-нибудь прибора. Для этих целей я взял блок питания, который ранее использовался в зарядном устройстве для шуруповёрта. Вот такой.

На любом блоке питания обычно указаны его характеристики. Нас в первую очередь интересует строчка OUTPUT («Выход»). Здесь указаны параметры выходного напряжения.

Как видим, выходное напряжение 15V. Буквы «dc«, указанные рядом, означают постоянное напряжение, т.е. на выходе блока выпрямленное постоянное напряжение. Что нам и нужно. Максимальный ток нагрузки составляет 400 mA (0,4A). Сам блок питания компактный, но собран из классического трансформатора, что ясно по его весу. Импульсные блоки питания, которые сейчас встречаются уже чаще, чем трансформаторные, на вес гораздо легче, а выходной ток, как правило, составляет 1~2 ампера.

Почему я выбрал этот блок?

Во-первых, он довольно компактный. При работе практически не нагревается. Имеет герметичный корпус. Всё это даёт возможность встроить его в люстру и без опаски разместить под потолком, не боясь его чрезмерного нагрева.

Вначале я планировал использовать его для питания только беспроводного переключателя Y-7E, но потом решил, что неплохо было бы его приспособить и для питания светодиодного светильника. В таком случае отпадает необходимость в ещё одном источнике питания для светодиодов, а от LED Transformer'а, который сильно грелся можно вообще избавиться.

Так как максимальный ток нагрузки для этого блока питания составляет 0,4А, то он легко справится с питанием беспроводного переключателя (100mA max) и светодиодного светильника (280 mA).

Доработка беспроводного переключателя Y-7E. Удаляем лишнее

Перед тем, как подключать блок питания к беспроводному переключателю, необходимо избавиться от элементов источника питания с гасящим конденсатором на его печатной плате. Так как мы собираемся питать беспроводной переключатель от отдельного блока питания, то эти элементы будут не нужны.

Чтобы было более наглядно, приведу схему рядового беспроводного переключателя (картинка кликабельна).

Сначала беспроводной переключатель необходимо разобрать и извлечь печатную плату из корпуса. Затем нужно демонтировать диоды VD1 — VD4 (1N4007). Это элементы диодного моста. Далее выпаиваем стабилитроны VD5, VD6. Также не помешает выпаять резистор R1 и «балластный» конденсатор C2.

Дроссель L1 и конденсатор C1 в моём блоке вообще отсутствовал. Это элементы фильтра. Видимо, сэкономили. Если вы обнаружите их на плате, то их можно выпаять, может ещё пригодятся.

Также, если есть желание, то можно убрать такие детали, как конденсаторы C3, C4, C5, C6 (на печатной плате отмечены, как C1, C2, C3, C4), а также резисторы R5, R6.

Демонтировать их я не стал, так как они смонтированы поверхностным SMD монтажом, не занимают много места, и не влияют на работу схемы после переделки.

Теперь, подать напряжение питания на беспроводной переключатель можно от любого подходящего источника питания, подсоединив его выход к печатной плате Wireless switch'а.

Для этого плюсовой провод припаиваем к точке «А+» или «А1+«, а минусовой к точке «B-» или «B1-«. Я, например, запаял провода источника питания 12V в отверстия, куда были впаяны диоды выпрямительного моста (точки A+ и B-).

Так как мой блок питания выдавал 15V, то для питания светодиодов (LED Lamp) напряжение в 15V идеально подходило. Напомню, что они включены последовательно по 5 штук (5 x 3V = 15V). Но для питания беспроводного переключателя требовалось напряжение в 12…13V.

Тогда я решил применить интегральный стабилизатор на LM78L12 в корпусе TO-92, чтобы понизить напряжение с блока питания и заодно стабилизировать его. Но, когда я собрал на макетной плате тестовую схему, то меня ожидало два сюрприза.

Первый заключался в том, что напряжение на входе стабилизатора LM78L12 оказалось не 15V, а 24! Сначала меня это озадачило. Сама конструкция работала исправно. На беспроводной переключатель приходили нужные 12V. Но при этом очень сильно грелся интегральный стабилизатор LM78L12. Стало понятно, что надо ставить что-то посерьёзнее.

Откуда взялись 24V на входе? Как оказалось, тот блок, который я взял от зарядного устройства шуруповёрта оказался собран по упрощённой схеме. В нём не было сглаживающего пульсации электролитического конденсатора! Да и зачем он нужен, ведь ранее он использовался в паре с простеньким зарядным устройством.

Так как блок питания неразборный, то я не знал, что в нём нет конденсатора.

Когда я собирал тестовую схему на макетке, то согласно даташиту, установил на вход стабилизатора электролитический конденсатор небольшой ёмкости. В результате, выпрямленное пульсирующее напряжение заряжало вдруг появившийся конденсатор до уровня 22…24V. Если помножить 15V на √2(~1,414213…), то получим чуть более 21V. Так как выходное напряжение блока питания не стабилизировано (15…17V), то на конденсаторе напряжение достигало уже 24V без нагрузки!

О том, что на конденсаторе после выпрямителя выделяется пиковое напряжение, я уже подробно рассказывал на странице про блок питания на базе готового DC/DC-преобразователя.

Так как напряжение на входе LM78L12 было уже 24V, то стабилизатор очень сильно грелся. Для тех, кто не в курсе, скажу, что чем большее напряжение гасится на стабилизаторе (в моём случае это 12V), тем большая мощность выделяется на нём самом. Он сильнее греется.

Если помножить потребляемый ток беспроводного переключателя, который в максимуме составляет около 0,1А на 12V, которое «падает» на стабилизаторе LM78L12, то мы получим мощность в 1,2 Вт. Она выделяется в виде тепла.

Чтобы отвести эту мощность со стабилизатора (охладить его) требуется радиатор. Тогда вместо миниатюрного LM78L12ACZ в корпусе TO-92 я взял версию KA7812 в корпусе ТО-220 с фланцем и прикрепил к нему небольшой радиатор. Посчитал, что этого будет достаточно. Получилась вот такая штука. Даже в корпусе идеально убиралась.

Но, как оказалось, все мои старания оказались тщетны . Даже с радиатором стабилизатор очень сильно грелся. Для сведения, если палец жжёт, что аж держать нельзя, то температура явно больше 50~600С. При 60~700С уже можно получить ожог, начинается денатурация белка.

Да, можно прикрутить радиатор побольше, но вот как это потом втиснуть в маленький корпус, а затем ещё поместить в то небольшое пространство между люстрой и потолком? Поэтому, решил отказаться от идеи со стабилизатором .

На помощь пришёл регулируемый DC/DC преобразователь на микросхеме LM2596S. Это так называемый Step Down преобразователь, т. е. понижающий.

В своё время купил таких на Али с индикатором и без. Вот и пригодился. Нагрузка в 0,1А для него смешная, он не нагревается. Сам модуль маленький и его легко втиснуть в небольшой по размерам корпус. Идеально втиснулся в контейнер от фотоплёнки старых фотоаппаратов.

Подключаем DC/DC-модуль к плате Wireless switch. Не забываем, что после сборки всё должно быть в корпусе.

Доработка светодиодного светильника. Установка ограничительных резисторов

Так как выходное напряжение блока питания составляет 21…24V, а для светодиодной части люстры достаточно 15V, то для каждой ветки из 5 светодиодов пришлось установить ограничительный резистор. Рассчитать сопротивление резистора для светодиодов можно с помощью вот этого онлайн-калькулятора.

Источник: http://go-radio.ru/peredelka-kitayskoy-lyustry-s-pultom-du.html

Какие лампы не нагреваются при своей работе

Люстра на светодиодах греется трансформатор

Сегодня для освещения своего дома можно подобрать самые разнообразные источники света: от старых и проверенных ламп накаливания, до современных и экономных светодиодных лампочек. Любые светильники, будь то люстры или бра, могут использовать в качестве источника света любую модель, подходящую под цоколь.

Во время своей работы лампочки имеют тенденцию к нагреванию. Одни нагреваются сильнее, чем другие, что определяет одно из основных критериев выбора.

Во многих ситуациях люди, выбирая лампочки для люстры и других типов светильников, не задумываются об этой составляющей. Но иногда такой подход может привести к негативным последствиям, особенно в ситуации натяжных потолков.

Наша статья расскажет вам про лампочки, что в процессе своей работе не нагреваются и почему об этом обязательно стоит задумываться при наличии натяжных потолков.

Начнем с потолков

Натяжные потолки сегодня стали довольно популярным и частым явлением в наших домах и квартирах. По распространенности они сравнимы разве что с гипсокартонными конструкциями.

Обратите внимание! Особенностью любых натяжных потолков является их основа или натяжное полотно. Оно состоит из специального материала (ПВХ пленки), который при нагревании специальным строительным феном способен принимать натянутое положение вдоль всей площади потолка.

Натяжной потолок

Поливинилхлорид, которые является основой такой пленки, довольно плохо переносит нагрев после своей установки.

Поэтому здесь и возникает необходимость в правильном подборе истопника света для люстр и точечных светильников, которые в дальнейшем будут установлены на конструкции для освещения помещений.
Неправильный подбор лампочки или неверное размещение люстр (бронзовых, хрустальных и т.д.

) может привести к повреждению натяжных потолков. Используя лампочки, которые обладают способностью сильно нагреваться, вы можете легко повредить хрупкую структуру поливинилхлорида.

Обратите внимание! Необратимое разрушение поливинилхлоридного слоя происходят при достижении температуры 110-120оС.

Если обобщить, то такое повреждение возможно в следующих ситуациях:

  • неправильно подобранный источник света. Это самая главная причина, по которой чаще всего портится красивая глянцевая поверхность натяжных потолков. В ситуации с таким потолком специалисты рекомендуют использовать только энергосберегающие лампочки;

Обратите внимание! Энергосберегающие источники света сегодня могут использоваться в любых светильниках: от люстр (стеклянных, хрустальных, бронзовых и т.д.) до точечных светильников. Как правило, именно эти два типа осветительных приборов имеют место при установке натяжных потолков.

  • установка люстр (бронзовых, хрустальных, деревянных и т.д.) слишком близко к натяжной поверхности. Для того чтобы минимизировать негативное воздействие нагретой лампочки на структуру потолка, люстры обычно используют подвесных разновидностей. В этом случае можно снизить вред путем увеличения расстояния между источником света и поливинилхлоридной пленкой;

Обратите внимание! Вариант с установкой люстр подвесной модели не всегда уместен, так как в помещении могут быть низкие потолки. В такой ситуации приходится использовать точечные светильники, встроенные в потолок, или потолочные люстры. А это не решает проблему.

Люстра на натяжном потолке

  • установка плафонов таким образом, что они светят вверх, на покрытие натяжных потолков. Если плафоны будут размещены именно так, а не вниз, то тепловой поток станет концентрироваться на пленке, а не рассеиваться в пространстве комнаты. Это опять-таки приводит к появлению дефектов на полотне.

Самым лучшим и простым в реализации вариантом, который позволит избежать повреждения поливинилхлоридной пленки потолочной конструкции, является использование энергосберегающие источники света.

Источники света

Не все энергосберегающие лампочки, что на данный момент времени представлены на рынке осветительных изделий, имеют низкий нагрев при работе. Поэтому в данной ситуации чтобы определить, какие источники наиболее выгодны для натяжных конструкций, нужно детально рассмотреть все потенциальные варианты, так как все они в любом случае будут хотя бы немного, но нагреваться.
Все лампочки можно условно поделить на два основных вида:

  • экономные или энергосберегающие. Сюда относятся лампочки, которые в той или иной степени могут потреблять меньше электроэнергии;

Энергосберегающие источники света

Лампы накаливания

  • лампы накаливания. Это первые модели источников света. Поэтому их отличает очень сильное нагревание в процессе своей работы и, вдобавок ко всему, они неэкономны в плане потребления электроэнергии. Поэтому они в любом случае не могут использоваться для подсветки помещений с натяжными потолками. Тем не менее, они еще иногда встречаются, так как подходят для люстр и других осветительных приборов по размеру цоколя.

Как видим, для натяжных потолков подходят только энергосберегающие лампочки, которые способны не только экономить энергию, но и меньше нагреваться в процессе своей работы. Но так ли это? Чтобы понять, все ли энергосберегающие источники света имеют незначительный нагрев и могут использоваться в натяжной потолочной конструкции, нужно рассмотреть их более детально.
На сегодняшний день в перечень потенциальных претендентов входят такие энергосберегающие лампы:

  • светодиодные;
  • люминесцентные.

Каждый кандидат из приведенного перечня является более совершенной моделью, чем лампы накаливания. Но они все равно не лишены достоинств и недостатков.

Светодиодные источники света

Светодиодные лампочки на сегодняшний день считаются самыми лучшими и наиболее востребованными источниками света. Их используют не только для люстр (бронзовых, деревянных, хрустальных и т.д.) и точечных светильников, но и для настенных бра, настольных и напольных ламп и прочих видов осветительных приборов.

Светодиодные лампы

Огромную популярность такие лампочки получили по причине наличия у них ряда достоинств:

  • длительный период службы, который составляет около 50 000 часов. Это самые долговечные источники света из ныне существующих;
  • отличные характеристики светового потока, создаваемого светодиодами;
  • минимальное нагревание. Конечно, элементы светодиодных ламп все равно нагреваются. Но нагрев крайне незначительный и не может повлиять на натяжную поверхность, выполненную из поливинилхлорида;
  • подходит для любых типов осветительных приборов: люстр, бра, точечных светильников и т.д.;
  • это самые экономичные лампочки. При их использовании получается экономить до 90% электроэнергии;
  • возможность выбора цвета светового потока: теплый, нейтральный или холодный.

Но среди всех достоинств, которые, несомненно, очень востребованы в современном мире, у светодиодных лампочек все же имеется один недостаток, который не позволил им полностью вытеснить с рынка другие типы источников света. Это недостаток заключается в высокой стоимости светодиодной продукции. Тем не менее, она с лихвой окупится всеми перечисленными выше достоинствами. Именно такие лампочки следует использовать, если вы имеете дело с натяжными потолками.

Люминесцентные источники света

Эти лампочки могут разительно отличаться между собой как по строению, так и по техническим характеристикам. Вместе с тем, какие бы они не были, но у них имеются и общие моменты работы:

  • являются энергосберегающими. Хотя им далеко до экономичности светодиодной продукции, они в данном вопросе все же будут значительно экономичнее своих предшественников – ламп накаливания;
  • нагрев стеклянной колбы изделия в процессе работы. Несмотря на то, что нагрев здесь все же будет меньшим, чем у ламп накаливания, но этого может быть вполне достаточно для того, чтобы с течением времени привести к деформации натяжного полотна потолка. Особенно, если их разместить близко к перекрытию.

Люминесцентные лампы

Устанавливания такие изделия на натяжном потолке, следует постараться снизить их вред, увеличивая расстояние до полотка и изменяя направленность плафонов книзу.

Заключение

Как видим, в мире не существует лампочек, которые при своей работе полностью не нагревались бы. Но светодиодные источники света максимально приблизились к этому, что делает их самым лучшим вариантом для освещения натяжных потолков.

Источник: https://1posvetu.ru/istochniki-sveta/kakie-lampy-ne-nagrevayutsya-pri-svoej-rabote.html