Какой прибор измеряет сопротивление в электрической цепи?

Содержание

Омметр

Какой прибор измеряет сопротивление в электрической цепи?

Радиоэлектроника для начинающих

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора.

В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм).

На зарубежных схемах «Ом» пишется как «Ohm».

Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

  • Короткое замыкание, где его быть не должно.
  • Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах…

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры.

Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.

Практическая работа с мультиметром DT-830B

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

  • 200 — на этом пределе измеряются сопротивления величиной до 200 Ом;
  • 2000 — на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);
  • 20k — на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);
  • 200k — предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);
  • Ну, и наконец, 2000k — предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0

Источник: http://go-radio.ru/ommetr.html

Мультиметры: виды, измерить сопротивление, правильно провести измерение

Какой прибор измеряет сопротивление в электрической цепи?

Измерить какие-либо электрические величины — такая необходимость возникает иногда у любого современного человека.

Читайте также  Назначение контрольно измерительных приборов требования к ним

Не вызывать же каждый раз мастера или обращаться к знакомым при возникновении простейшей неисправности в быту? Любой автомобилист постоянно сталкивается с ситуациями, когда необходимо проверить напряжение питания аккумуляторной батареи или проверить целостность электрических предохранителей под капотом машины. Приобретение прибора, название которого мультиметр, и работа с ним позволит подойти ближе к решению возникшей проблемы.

Из названия прибора следует, что он является комбинированным устройством, объединяющим в себе несколько приборов различного назначения.

Назначение омметра, области его применения

Прибор, используемый в мультиметре для измерения электрического сопротивления цепи, называется омметром. В его названии первая часть происходит от единицы величины электрического сопротивления Ом. С помощью него измеряют электрическое сопротивление участка цепи, резисторов. Проверяют исправность катушек индуктивности, целостность обмоток силовых трансформаторов, плавких предохранителей. В простейшем случае можно оценить исправность электрической лампочки.

Его можно использовать при поиске неисправностей в цепях высокочастотных коаксиальных телевизионных кабелей. Причиной срыва телевизионного изображения может быть неправильный монтаж телевизионных штекерных вилок: ненадёжная пайка основной жилы кабеля и его экранирующей оплётки, короткое замыкание между ними. С помощью омметра можно быстро определить такие дефекты.

Радиолюбители часто используют омметр для оценки целостности проводников на печатных платах, правильного функционирования полупроводниковых диодов и транзисторов. Можно проверить конденсатор на пробой между его обкладками.

Метод измерения сопротивления

В основу измерения положен закон Ома, который известен многим из школьного курса физики. Он определяет силу тока (I), протекающего в электрической цепи, как величину, пропорциональную величине напряжения (U), приложенному к этому участку и обратно пропорциональную сопротивлению ® этого участка. Или:

I = U / R

В приборе имеется источник питания постоянным током, которым является штатная батарейка или комплект штатных батареек. Если подключить измеряемое сопротивление к щупам прибора, то, измерив величину тока, протекающего через сопротивление, можно определить его величину по шкале (цифровому индикатору), которая покажет его величину уже в единицах сопротивления.

Классификация мультиметров

Мультиметры, используемые для измерения сопротивления, по своему исполнению могут быть аналоговыми и цифровыми. У аналоговых приборов значение измеренной величины сопротивления можно определить проградуированной шкалы прибора, на котором остановилась стрелка прибора во время проведения измерения. У цифровых приборов величина измеренного значения отображается в виде цифрового значения на собственном дисплее.

Аналоговые приборы

Аналоговые мультиметры имеют другое название — стрелочные. С ними продолжают работать опытные пользователи и профессиональные электрики. Появились они несколько десятилетий назад, намного раньше цифровых приборов. Их основу составляет стрелочный микроамперметр с набором дополнительных резисторов и шунтов высокого класса точности.

Измерение сопротивления мультиметром производится при установке галетного переключателя, расположенного на его передней панели, в различные точки сектора «Ω». В зависимости от величины измеряемого сопротивления положения переключателя определяют границы диапазона, в котором ожидается результат. Это могут быть отметки: Ом (Ω), кОм (1к), десятки кОм (х10), сотни кОм (х100).

Величины сопротивлений более 1 МОм аналоговым мультиметром обычно не измеряют. Это связано с нелинейностью шкалы прибора. Наибольшую точность она имеет в правой части (примерно первые 2/3). Затем её оцифровка сжимается. Соответственно, левую часть шкалы лучше не использовать, переключиться на другой предел измерений.

Напряжение батарейки, участвующей в измерениях величины сопротивления, ограничено её номинальным значением, следовательно, при измерении сопротивления большой величины ток, протекающий через него, имеет очень незначительную величину. Стрелка прибора едва отклоняется в левой части шкалы, в которой погрешность измерения имеет максимальное значение. В любом случае точность измерений не превышает 2%.

Перед проведением измерения сопротивления концы щупов прибора необходимо замкнуть между собой и вращением рукоятки переменного резистора, выведенной на переднюю панель, выставить положение стрелки, соответствующее нулевой отметке шкалы измерения сопротивлений. Если установить стрелку на «0» не удаётся, то принимается решение о замене батарейки.

Цифровые устройства

Цифровыми мультиметрами сегодня пользуется большинство людей, которым необходимо производить измерения сопротивлений. Результат произведённого замера отображается на табло индикаторов цифрами, которые соответствуют величине измеряемого сопротивления.

Для этого галетный переключатель на передней панели прибора необходимо перевести в одно из положений сектора «Ω».

В зависимости от значения измеряемого сопротивления выбор этого положения должен быть таким, чтобы предел измерения был выше величины сопротивления, которую надо измерить.

У мультиметров последних моделей существует 5 пределов измерения, которые начинаются с 200 (до 200 Ом) и закачиваются 2000к (2.000.000 Ом).

Измерительные щупы мультиметра необходимо соединить с крайними точками детали (резистора). Если номинальное сопротивление резистора больше предела измерения выбранного диапазона, то на цифровом индикаторе прибора отобразится «1».

После этого необходимо изменить предел измерения в сторону увеличения. При правильном выборе диапазона цифры на индикаторе покажут значение величины сопротивления резистора.

Цифра «1» на любом из выбранных диапазонов говорит о неисправности резистора или, что бывает довольно часто, об отсутствии контакта между щупами прибора и резистором.

Также нередки случаи обрывов в проводах измерительных щупов. Для проверки их исправности необходимо их концы надёжно соединить между собой, выставив предварительно переключателем низший предел измерений. При этом цифры на индикаторе должны показывать значение, близкое к нулю. После такой проверки следует принять решение: неисправен проверяемый резистор либо измерительные щупы. В последнем случае необходимо провести их тщательный ремонт. Исправное состояние измерительной части в дальнейшем сэкономит много времени.

Кстати, такая же неприятность может случиться и при работе с аналоговым мультиметром.

Сравнение мультиметров разных видов

Работать с цифровыми мультиметрами проще, чем с аналоговыми. Многие начинающие пользователи считают, что пользование аналоговым мульльтиметром требует специальной подготовки и большого практического опыта работы с ними. Это действительно так.

Показания стрелки надо ещё правильно интерпретировать в зависимости от выбранной шкалы («Ω «) и положения множителя галетного переключателя. Точность аналоговых мультиметров также невелика. Она зависит от класса точности микроамперметра, применяемого в них. Класс точности обозначается на шкале прибора.

С другой стороны показания аналоговых мультиметров более стабильны. Информация стрелки прибора является усреднённой и не меняется при мгновенных колебаниях измеряемой величины. Это свойство присуще магнитоэлектрической системе микроамперметра. Показания же цифрового мультиметра в этой ситуации будут хаотически изменяться. А причиной таких резких колебаний может стать банальный переменный контакт измерительных щупов с проверяемой деталью.

Аналоговые мультиметры менее восприимчивы к различным электромагнитным излучениям. Схемы же цифровых приборов содержат определённое количество полупроводниковых элементов, а они очень восприимчивы к таким внешним воздействиям.

Мультиметры обоих видов используют батарейку. В цифровых приборах схема предусматривает наличие датчика разряда источника питания. По его команде прибор отключается, сигнализируя об этом. В такой же ситуации аналоговый мультиметр продолжает работу с выдачей неверных показаний.

Многие цифровые мультиметры имеют функцию «прозвонка» со звуковой сигнализацией. Это очень удобно. Если сопротивление измеряемой цепи меньше 50 Ом, то звучит тональный звуковой сигнал, привлекающий внимание. Самые «продвинутые» модели снабжены функцией запоминания измеренного значения (кнопка «HOLD» на передней панели прибора). С такими образцами удобно работать в труднодоступных местах. Но на кнопку надо нажимать не до, а во время проведения измерения. В противном случае показания окажутся недостоверными.

Советы пользователям

Нижеприведенные советы будут полезны как для неопытных пользователей мультиметра, так и для тех, кто давно с ним знаком:

  • При измерении сопротивления резисторов нельзя касаться выводов детали руками. Это относится и к металлическим частям щупов прибора. Если не выполнить это условие, показания прибора не будут соответствовать действительности. Будет произведён замер параллельного соединения резистора и участка тела человека, который обладает своим собственным сопротивлением. Показания прибора окажутся заниженными.
  • При необходимости проверить сопротивление элемента, впаянного в схему, необходимо предварительно обесточить схему.

Элемент необходимо выпаять из схемы и только после этого производить необходимые измерения. В противном случае замеряется сопротивление не конкретного элемента, а параллельное соединение его самого и участка схемы, в котором он установлен.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/multimetry/kak-izmerit-pomerit-soprotivlenie-s-pomoschyu-multimetra.html

Измерение сопротивлений

Какой прибор измеряет сопротивление в электрической цепи?

Мерой электрического сопротивления, т. е. образцом единицы сопротивления, является образцовая катушка сопротивления. Набор катушек сопротивления, соединяемых по определенной схеме, называется магазином сопротивлений.

Магазины сопротивлений бывают штепсельные и рычажные, у первых переключение катушек производится при помощи штепселей, у вторых — при помощи рычажных переключателей. На рис. 7-28 дана схема одной «декады» пятикатушечного рычажного магазина сопротивления, дающего возможность переключателем изменять включенное между зажимами сопротивление от 0 до 9 ом ступенями по 1 ом.

Мост для измерения сопротивлений, схема которого показана на рис. 7-29, состоит из трех плеч — трех магазинов сопротивлений: r1, r2 и rЧетвертым плечом служит измеряемое сопротивление rх. В одну диагональ моста включают источник питания, в другую — гальванометр.

Изменяя сопротивления трех плеч, при замкнутой кнопке Ʀ1можно получить равенство потенциалов: точек А и Б, о чем можно судить по отсутствию отклонения стрелки гальванометра при замыкании кнопки Ʀ2

Рис. 7-28. Рычажный пятикатушечный магазин сопротивлений

Читайте также  Прибор для проверки пускового тока аккумулятора

В этом случае напряжение UВА = UbБ и Vаг = UБГ или I1r1= I2rх и I1r2 = I2r. Разделив почленно, получим;

(I1r1)/(I1r2) = (I2)/(I2r)

откуда

rх r(r1/r2)

По найденной формуле для уравновешенного м о с т а и подсчитывают искомое сопротивление.

Рис. 7-29. Мост для измерения сопротивлений.

Если в схеме моста сопротивления трех плеч и напряжение питания неизменны, то ток в гальванометре зависит только от сопротивления rх.Это позволяет на шкале гальванометра нанести деления, дающие значения искомого сопротивления или величины, от которой оно зависит, например температуры. Такие измерительные мосты называются неуравновешенными.

Измерение сопротивлений амперметром и вольтметром

Величина сопротивления найденная по показанию амперметра и вольтметра (рис. 7-30), больше действительной величины искомого сопротивления rх на величину сопротивления амперметра, так как в схеме на рис. 7-30 вольтметр измеряет сумму напряжений на сопротивлении rх и на амперметре. Если измеряемое сопротивление значительно больше сопротивления амперметра, то погрешность измерения будет небольшой.

Величина сопротивления

x = U/I

Рис. 7-30. Схема соединения для измерений сопротивлений амперметром и вольтметром (для больших сопротивлений).

наиденная по показанию приборов (рис. 7-31), меньше действительной величины искомого сопротивления rxтак как амперметр измеряет сумму токов в сопротивлении rхи в вольтметре. Если измеряемое сопротивление значительно меньше сопротивления вольтметра, то погрешность будет небольшой.

Рис. 7-31. Схема соединения для измерений сопротивлений амперметром и вольтметром (для меньших сопротивлений).

Омметры

Омметры и мегомметры это приборы для непосредственного измерения сопротивлений.

Они делятся на две группы: омметры, показания которых зависят от напряжения источника питания, и омметры, показания которых не зависят от напряжения источника питания.Омметр первой группы (рис. 7-32) состоит из магнитоэлектрического измерительного механизма с добавочным сопротивлением rд и последовательно соединяемым измеряемым сопротивлением — последовательная схема. Омметр часто снабжается батареей сухих элементов.

Рис. 7-3-2. Последовательная схема омметра, показания которого зависят от напряжения источника питания.

При разомкнутой кнопке Ʀ ток в цепи

I = Cα = U/(rx + rи + rд)

где α иС — угол поворота подвижной части ипостоянная по току измерительного механизма. Из выражения следует, что

α = (U/C)(1/rx + rи + rд)

Таким образом, для получения однозначной зависимости угла поворота подвижной части от измеряемого сопротивления, а следовательно, возможности нанести на шкале значения этого сопротивления необходимо при постоянной величине rи + rд обеспечить постоянство отношения U/C.

Для поддержания неизменным отношения U/Cпри изменении напряжения источника питания необходимо регулировать величину С, что достигается изменением магнитной индукции в воздушном зазоре измерительного механизма магнитным шунтом. Магнитный шунт это стальная пластина, которую поворотом винта приближают или удаляют от полюсных башмаков N’, S’измерительного механизма (рис. 7-1).

Для регулировки величины С, при подключенных батарее и сопротивлении rxзамкнув кнопку Ʀ изменяют положение магнитного шунта до тех пор, пока стрелка омметра не установится на нуль шкалы. Разомкнув кнопку, отсчитывают на шкале значение измеряемой величины.

На рис. 7-33 дана другая — параллельная схема того же омметра, в которой измеряемое сопротивление rх соединяется параллельно измерительному механизму. Можно доказать, что при постоянной величине rи + rд и неизменном отношении /С угол поворота подвижной части будет однозначно зависеть от измеряемого сопротивления.

Омметры второй группы имеют магнитоэлектрический измерительный механизм с двумя рамками на одной оси (рис. 7-34). Ток к рамкам подводится при помощи безмоментйыхленточек, не создающих противодействующих моментов.

Рис. 7-33. Параллельная схема омметра, показания которого зависят от напряжения источника, питания.

Токи в рамках направлены противоположно, так что от взаимодействия их с полем магнита создаются два момента, направленные в разные стороны. Разность этих моментов вызывает поворот подвижной части на угол, при котором моменты взаимно уравновешивают друг друга. Угол поворота подвижной части определяется отношением токов в рамках, т. е.

Измерительные механизмы, угол поворота которых зависит от отношения токов, называются логометрами.

Рис. 7-34. Измерительный механизм логометра.

Одна параллельная ветвь омметра логометра (рис. 7-35) состоит из рамки и измеряемого сопротивления rx, другая ветвь — из второй рамки и добавочного сопротивления rд. Приняв во внимание, что токи в параллельных ветвях распределяются обратнопропорционально их сопротивлениям, можно написать:

α = f(I1/I2) = f(rx/rд)

Так как rд — неизменно, то угол поворота зависит только от величины измеряемого сопротивления.

Источником питания обычно служит магнитоэлектрический генератор, расположенный в кожухе омметра, приводимый во вращение от руки.

Измерение сопротивления изоляции

Сопротивление изоляции установки легко изменяется, поэтому его необходимо периодически измерять.

 Рис. 7-35. Схема омметра логометра.

В соответствии с Правилами устройства электроустановок (ПУЭ):

а) испытание сопротивления изоляции осветительных и силовых электропроводок производится мегомметром с напряжением 1 000 в;

б) наименьшее сопротивление изоляций допускается 0,5 Мом;

в) сопротивление изоляции при снятых плавких вставках измеряется на участке между смежными предохранителями или за последним предохранителем, между любым проводом и землей, а также между любыми двумя проводами.

Сопротивление изоляции сети, не находящейся под рабочим напряжением, определяется при помощи мегомметра. Для измерения изоляции одиниз зажимов, помеченный буквой Л,присоединяют к испытуемому проводу, а второй зажим мегомметра, помеченный буквой 3, соединяют с землей (рис. 7-36). Вращая рукоятку мегомметрам номинальной скоростью, отсчитывают на шкале искомое сопротивление.

Рис. 7-36. Схема для измерения сопротивления изоляции провода относительно земли.

Присоединив зажим мегомметра Лк второму проводу, аналогично определяют сопротивление изоляции второго провода относительно земли. Для измерения сопротивления изоляции между двумя проводами к ним присоединяют два зажима мегомметра (рис. 7-37). Аналогичным образом производится измерение сопротивления изоляции электрических машин и аппаратов.

Статья на тему Измерение сопротивлений

Источник: https://znaesh-kak.com/e/e/%D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B9

Измеритель сопротивления: как называется прибор и как проводятся измерения?

Какой прибор измеряет сопротивление в электрической цепи?

Сопротивление элементов электрической цепи — важнейший параметр, поскольку от него зависит величина протекающего в цепи тока. А сила тока, в свою очередь, определяет сечение проводов, номинал автоматов защиты и многое другое. Какой же используют прибор для измерения сопротивления в той или иной ситуации?

Принципы измерения электрического сопротивления

Различают два вида электрического сопротивления: активное и реактивное.

Активное или резистивное

Это противодействие материала движению электрически заряженных частиц, имеющее место при любом виде тока.

Закон Ома наглядно

Определяется из закона Ома для участка цепи: R = U/I, где:

  • R — сопротивление участка цепи, Ом;
  • U — падение напряжения на участке цепи, В;
  • I — сила тока на данном участке, А.

Таким образом, для вычисления активного сопротивления элемента требуется приложить к его выводам некоторое известное напряжение и замерять силу протекающего в цепи тока.

Реактивное

Существует только в цепях переменного тока, подразделяется на два типа:

Емкостное сопротивление в цепи переменного тока

Для расчета реактивного сопротивления применяются более сложные методики и приборы.

Конструкция простейшего омметра

Омметр — прибор для измерения активного сопротивления. Самый простой вариант — аналоговый или стрелочный. Действие основано на способности протекающего по проводнику тока создавать магнитное поле, значительно усиливающееся при сматывании провода в катушку.

Внутри аналогового омметра имеются такие компоненты:

  1. подвижная катушка на пружинке с присоединенной к ней стрелкой;
  2. постоянный магнит;
  3. блок ограничивающих резисторов R (нужный выбирается переключателем);
  4. источник питания — батарейка или аккумулятор;
  5. щупы с разъемами для подключения к прибору.

При подсоединении щупов к выводам проверяемого элемента с сопротивлением RX, цепь замыкается и через катушку течет ток.

Его величина зависит от RX, а ограничивающий резистор R исключает возможность короткого замыкания. От силы тока зависит индукция магнитного поля, создаваемого катушкой, и, соответственно, сила ее взаимодействия с постоянным магнитом.

Чем выше эта сила, тем больше смещается катушка, растягивая пружину, и тем дальше отклонится прикрепленная к ней стрелка. Подключая разные ограничивающие резисторы, меняют чувствительность прибора — от нее зависит диапазон измерений.

Цифровой омметр

Цифровой омметр — современный вариант. Вместо аналогового измерительного механизма используются датчики напряжения и тока, отсылающие сигнал на микропроцессор. Тот анализирует данные и выводит результат на жидкокристаллический дисплей.

Преимущества перед аналоговыми:

  • высокая точность показаний;
  • результаты измерений легко читаются (при использовании аналогового омметра приходится вглядываться в шкалу);
  • компактные размеры;
  • дополнительные функции: память, фиксация показаний и пр.

Недостаток цифровых моделей: датчики опрашивают цепь через определенные временные интервалы, потому невозможно отследить изменения измеряемого параметра в режиме реального времени.

Из-за этого профессиональные мастера-электронщики часто отдают предпочтение аналоговым моделям.

В быту применяют не омметры, а мультиметры — многофункциональные приборы для измерения нескольких параметров (сопротивление, напряжение, сила тока, емкость конденсатора и т.д.).

Мегаомметры

Важное значение имеет величина сопротивления изоляции токоведущих частей, поскольку она обеспечивает безопасную эксплуатацию электроустановки и предотвращает короткое замыкание. Изоляцию изготавливают из диэлектриков — материалов с высоким электрическим сопротивлением, измеряемым мегаомами.

Потому для создания тока в цепи напряжения источника, тока имеющегося в обычном омметре недостаточно. Мегаомметр оснащен генератором постоянного тока, приводимым в действие вращением рукоятки. Он способен развивать напряжение до 2,5 кВ.

Вместо двух разъемов для подключения щупов, как у омметра, в мегаомметре имеется три с такой маркировкой:

  1. «З» (в некоторых моделях «Rx»): земля;
  2. «Л» («-»): линия;
  3. «Э»: экран.
Читайте также  Виды нагревательных элементов в электронагревательных приборах

Первые два разъема используют при измерении сопротивления изоляции между токоведущими частями и землей либо между разными фазами. При помощи разъема «Э» нейтрализуют помехи, влияющие на точность показаний.

Мегаомметры также делятся на аналоговые и цифровые. В первых применяется тот же измерительный механизм, что и в обычных омметрах.

При работе с мегаомметром из-за высокого напряжения требуется осторожность; после измерений необходимо по особой методике разрядить наведенную прибором высоковольтную разность потенциалов (заряд накапливается протяженными участками кабелей).

Измерительные мосты постоянного тока

Недостаток омметров — большая погрешность. В обычных условиях она допустима, но в ряде случаев требуется более точное определение сопротивления.

Для измерения собирают мостовую схему из 4-х резисторов, один из которых — тестируемый (Rx), а три других — образцовые регулируемые (R1, R2, R3).

Одну диагональ моста подключают к полюсам источника питания, к другой через выключатель и ограничивающий резистор подсоединяют амперметр высокой чувствительности (милли- или микроамперметр). Подстраивая резисторы R1, R2 и R3, проверяющий балансирует мост — добивается, чтобы на амперметре отобразился «0».

Такая ситуация наступит при равенстве произведений сопротивлений на противоположных плечах моста, откуда определяют сопротивление Rx тестируемого элемента по формуле: Rx = (R1*R3)/R2.

Контура заземления

Залог надлежащей работы защитного заземления — его низкое сопротивление.

Требуется регулярно проверять сопротивление контура заземления, поскольку он может возрастать из-за следующих причин:

  • окисление (коррозия) поверхности электродов заземлителя;
  • увеличение удельного сопротивления грунта;
  • нарушение контакта между токопроводящей шиной и заземлителем из-за коррозии или механических повреждений.

Измерение сопротивления заземлителя также вычисляют по закону Ома для участка цепи.

Для этого на определенном расстоянии от тестируемого заземлителя, в грунт вбивают основной и вспомогательный измерительный электроды, затем соединяют их проводами с заземлителем.

Полученную цепь подключают к калиброванному источнику питания и замеряют две величины:

  1. протекающий в цепи ток I;
  2. падение напряжения U на участке между тестируемым заземлителем и вспомогательным электродом.

Искомое сопротивление определяют делением: R = U / I.

Измерение контура заземления

Описанный метод амперметра и вольтметра является наиболее простым, но дает значительную погрешность. Поэтому работа современных приборов основана на более точных методах, например, компенсационном. Сопротивление контуров заземления измеряют как аналоговыми приборами (МС-08, Ф4103-М1, М4116), так и цифровыми.

Весьма удобны приборы с токоизмерительными клещами, обладающие следующими преимуществами:

  • не используются дополнительное оборудование и электроды (необходимо двое токоизмерительных клещей);
  • не требуется разрывать цепь заземлителя.

Удельного сопротивления грунта

Некоторые из приборов для измерения сопротивления контура заземлителя, дополнительно снабжены функцией определения удельного сопротивления грунта. Для этого электроды подключают по иной схеме. Например, часто используют метод 4-х электродов.

Важно не располагать электроды ближе 20 м от коллекторов, металлических башен и прочих конструкций с хорошей проводимостью, так как они сильно искажают результаты измерений.

В цепях переменного тока

В цепях переменного тока помимо активного сопротивления имеет место реактивное. Для его измерения применяются другие приборы.

Петли фаза-ноль

Сопротивление участка электросети от трансформатора на подстанции до розетки нормируется. Если оно вследствие ошибок при монтаже или неверного подбора сечения проводов окажется завышенным, это приведет к несбалансированному режиму работы и даже аварии.

Данный участок представляет собой петлю, образованную фазным и нулевым проводниками. Отсюда и название — петля фаза-ноль.

Порядок действий при расчете сопротивления:

  1. вольтметром замеряют напряжение U1 между фазой и нулем в розетке. В идеале следует замерять ЭДС на выводах обмотки трансформатора, но доступа к нему обычно нет;
  2. в розетку включают нагрузку и последовательно с ней — амперметр. Нагрузка подбирается так, чтобы сила тока I в цепи была стабильной и составляла 10 – 20 А. При меньших значениях завышенное сопротивление петли может себя не проявить;
  3. вольтметром определяется падение напряжения U2 на нагрузке.

Расчет производят так:

  1. вычисляют полное сопротивление цепи: R1 = U1/I;
  2. рассчитывают сопротивление нагрузки: R2 = U2/I;
  3. определяют сопротивление петли фаза-ноль путем вычитания из полного сопротивления цепи сопротивления нагрузки: Rп = R1 – R2.

Обычным мультиметром выполнить измерения нельзя — он дает большую погрешность. Требуются приборы повышенной точности — класса 0,2. Это измерители лабораторного уровня: они часто поверяются и требуют от оператора высокой квалификации.Вместо амперметра и вольтметра по отдельности для измерения сопротивления петли фаза-ноль, используют специальные приборы.

Иногда их называют «измерителями тока короткого замыкания», но это не совсем верно: непосредственно токи КЗ прибор не определяют, он лишь вычисляет его значение, основываясь на результатах измерения (по обычному закону Ома).

Прибор содержит:

  • высокоточный амперметр;
  • высокоточный вольтметр;
  • нагрузочный резистор;
  • элементы питания для функционирования цифрового блока обработки данных.

Пользователю достаточно вставить щупы в розетку и нажать кнопку «пуск». Измеритель сам выполнит порядок действий, описанный выше, и отобразит результат на дисплее.

по теме

Как правильно пользоваться прибором для измерения сопротивления изоляции:

В процессе эксплуатации электросети приходится замерять сопротивление самых разных ее элементов. Для этого выпускают широкий перечень приборов, каждый из которых имеет свое назначение и не может быть заменен другими.

Источник: https://proprovoda.ru/instrument/izmeritelnyj/soprotivleniya.html

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное

Какой прибор измеряет сопротивление в электрической цепи?

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p— удельное сопротивление (единицы измерения ом*м/мм2);

l — длина проводника (м);

S — поперечное сечение (мм2).

Источник: https://pue8.ru/elektrotekhnik/413-elektricheskoe-soprotivlenie.html