Как рассчитать сопротивление в катушке трансформатора?

Содержание

Расчет трансформатора с броневым магнитопроводом :: АвтоМотоГараж

Как рассчитать сопротивление в катушке трансформатора?

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.

ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с броневым магнитопроводом:

  • напряжение первичной обмотки, U1 = 220 В;
  • напряжение вторичной обмотки, U2 = 36 В;
  • ток вторичной обмотки, l2 = 4 А;
  • толщина навивки a = 32 мм;
  • ширина ленты b = 50 мм;
  • ширина окна с = 18 мм;
  • высота окна h = 72 мм.

Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна.

Для перестраховки расчитаем трансформатор с магнитопроводом типа ОЛ70/110-60.

Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета – исходные данные для расчёта, поле жёлтого цвета – данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета – рассчитанное значение.

1. Мощность вторичной обмотки;

2. Габаритная мощность трансформатора;

Табл.№1.

Величина Суммарная мощность вторичных обмоток Рвых, [Вт] 2-15 15-50 50-150 150-300 300-1000
КПД 0,50-0,60 0,60-0,80 0,80-0,91 0,91-0,94 0,94-0,95

3. Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;

4. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;

5. Фактическая площадь сечения окна сердечника;

6. Величина номинального тока первичной обмотки;

Табл.№2.

Величина Суммарная мощность вторичных обмоток Рвых, [Вт] 2-15 15-50 50-150 150-300 300-1000
COS Φ 0,85-0,90 0,90-0,93 0,93-0,95 0,95-0,93 0,93-0,94

7. Расчёт сечения провода для каждой из обмоток (для I1 и I2);

Табл.№3.

Конструкция магнитопровода Плотность тока J, [а/мм кв.] при Рвых, [Вт] 2-15 15-50 50-150 150-300 300-1000
Броневой/лент 3,8-3,5 3,5-2,7 2,7-2,4 2,4-2,3 2,3-1,8

8. Расчет диаметра проводов в каждой обмотке без учета толщины изоляции;

9. Расчет числа витков в обмотках трансформатора;

n — номер обмотки, 
U’ — падение напряжения в обмотках, выраженное в процентах от номинального значения, см. таблицу.

В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами.

Табл.№4.

Тор, величина U’ Суммарная мощность вторичных обмоток Рвых, [Вт] 8-25 25-60 60-125 125-250 250-600
U’1 20-13 13-6 6-4,5 4,5-3 3-1
U’2 25-18 18-10 10-8 8-6 6-2

Табл.№5.

Конструкция магнитопровода Магнитная индукция Вмах, [Тл] при Рвых, [Вт] 5-15 15-50 50-150 150-300 300-1000
Броневой/лент 1,55 1,65 1,65 1,65 1,65

10. Расчет числа витков приходящихся на один вольт;

11. Формула для расчёта максимальной мощности которую может отдать магнитопровод;

Sст ф – фактическое сечение стали имеющегося магнитопровода в месте расположения катушки;

Sок ф – фактическая площадь окна в имеющемся магнитопроводе;

Вмах- магнитная индукция, см. табл.№5;

J — плотность тока, см. табл.№3;

Кок — коэффициент заполнения окна, см. табл.№6;

Кст — коэффициент заполнения магнитопровода сталью, см. табл.№7;

Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц.

Табл.№6.

Конструкция магнитопровода Рабочее напряжение Коэффициент заполнения окна Кок при Рвых, [Вт] 5-15 15-50 50-150 150-300 300-1000
Броневой/лент до 100 В 0,15-0,27 0,27-0,29 0,29-0,32 0,32-0,34 0,34-0,38
100 – 1000 В 0,13-0,23 0,23-0,26 0,26-0,27 0,27-0,30 0,30-0,33

Табл.№7.

Конструкция магнитопровода Коэффициент заполнения Кст при толщине стали, мм 0,08 0,1 0,15 0,2 0,35
Броневой/лент 0,87 0,88 0,90 0,91 0,93

Определив величину Sст*Sок, можно выбрать необходимый линейный размер магнитопровода, имеющий соотношение площадей не менее, чем получено в результате расчета.

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.

Намотка простого трансформатора своими руками

Как рассчитать сопротивление в катушке трансформатора?

Изготовить самодельный трансформатор – это стоящее дело, чтобы не тратить деньги на покупку трансформаторов.

Подбор материалов

Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ. Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак. Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

Каркас делают из стеклотекстолита или ему подобного материала.

Расчеты параметров самодельного трансформатора

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

N = 40-60 / S, где S – площадь сечения сердечника в см2.

Константа 40-60 зависит от качества металла сердечника.

Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм2, стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Количество витков первичной обмотки:

берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

Изготовление каркаса катушки трансформатора своими руками

Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

Намотка трансформатора своими руками

Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция.

Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

Окончание изготовления трансформатора своими руками

Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо. Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

Пример как сделать самодельный трансформатор

Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

Расчет трансформатора

Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р1 = 108 Вт:

Р1 = U1 x I1

где: I1 – ток в первичной обмотке;

тогда ток в первичной обмотке:

I1 = Р1 / U1 = 108 Вт / 220 В = 0,49 А.

Возьмем I1 = 0,5 ампера.

Из таблицы диаметр провода в зависимости от тока выбираем допустимый ток 0,56 А, диаметр 0,6 мм.

Самодельный трансформатор своими руками можно намотать без станка. На это уйдет два-три часа, не больше. Приготовим полоски бумаги для прокладки ее между слоями провода. Полоску вырезаем шириной равной расстоянию между щечками катушки трансформатора плюс еще пару миллиметров, чтобы бумага легла плотно, по краям витки не залезали друг на друга.

Длину полоски делаем с запасом два сантиметра для склеивания. По краям полоску слегка надрезаем ножницами, чтобы при изгибе бумага не рвалась.

Затем приклеиваем полоску бумаги на каркас, плотно пригладив ее.

Намотка первичной обмотки

Теперь берем провод от старой катушки, у которой провод с хорошей не потрескавшейся изоляцией. Конец провода вставляем в гибкую трубочку изоляции от старого использованного провода соответствующего подходящего диаметра. Просовываем конец обмотки в отверстие каркаса катушки (они уже имеются в старом каркасе).

Катушка мотается плотно, виток к витку. Намотав 3-4 витка, нужно прижать витки, друг к другу, чтобы намотка витков была плотной. Чтобы мотать трансформатор после намотки первого слоя, необходимо посчитать количество витков в ряду. У нас получилось 73 витка. Делаем прокладку полоской бумаги. Наматываем второй слой.

Во время намотки нужно все время держать провод в натянутом состоянии, чтобы намотка получалась плотной. После второго слоя также делаем прокладку из бумаги. Если не хватает длины провода, то соединяем с ним другой провод путем спайки. Лудим лакированный провод, нагрев конец паяльником на таблетке аспирина.

При этом лак хорошо снимается.

Когда намотка первичной обмотки закончена, то конец провода изолируем в трубочку и выводим наружу катушки. Между первичной и вторичной обмотками делаем обмоточную изоляцию. Можно мотать трансформатор дальше.

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Р2 = 100 ватт

Р2 = U2  x I2

где:

U2 = 18 вольт;

I2 – ток;

Допустимый ток во вторичной обмотке будет равен:

I2 = Р2 / U2 = 100 Вт / 18 В = 5,55 А.

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Сборка трансформатора своими руками

Для ускорения сборки берем по две Ш-образные пластины. Вставляем их внутрь каркаса поочередно с двух сторон по две штуки.

Перекрывающие пластины пока не ставим. Они будут установлены позже. Если вставлять все пластины сразу всем пакетом, то между пластинами появляются зазоры и индуктивность всего сердечника падает. После сборки Ш-образных пластин самодельного трансформатора вставляем перекрывающие пластины, также по две штуки.

После сборки сердечника аккуратно обстукиваем его плоскости молотком для выравнивания пластин. При помощи стоек и шпилек будем стягивать сердечник. По правилам на шпильки надеваются бумажные гильзы для снижения потерь в сердечнике.

Концы обмоток зачищаем и лудим. Затем припаиваем к выводным планкам, которые можно прикрепить к каркасу трансформатора. Получился готовый трансформатор своими руками.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: https://elektronchic.ru/domashnij-elektrik/transformator-svoimi-rukami.html

Как рассчитать и намотать силовой низкочастотный трансформатор для блока питания УНЧ?

Как рассчитать сопротивление в катушке трансформатора?

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Читайте также  Как рассчитать мощность ТЭНа для нагрева воды?

Максимальные ориентировочные значения индукции

Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

Где взять исходный трансформатор?

Проще всего подобрать готовый трансформатор на радиорынке, если, конечно, он есть в вашем городе. Там же можно договориться о перемотке трансформатора. Но, и трансформаторы, и услуги по их перемотке достаточно дороги.

На картинке часть лотка на радиорынке, где можно купить трансформаторы в городе Cishinau (Кшинёв).

Если у Вас в сарае или на балконе валяется какая-нибудь ненужная техника, то наверняка в ней есть и трансформаторы. Любой разборный сетевой трансформатор очень легко переделать под свои нужды. Самое главное, чтобы хватило его габаритной мощности.

Если мощность трансформатора меньше требуемой, то под нагрузкой выходное напряжение трансформатора может существенно просесть. Но, это тоже не беда, так как микросхемы типа TDA2030, TDA2040 и TDA2050 могут работать при значительном снижении напряжения питания, а именно: ±6, ±2,5 и ±4,5 Вольт соответственно.

Маловероятно, что вторичные обмотки найденного трансформатора подойдут по току и напряжению, но первичная обмотка уже рассчитана на напряжение осветительной сети и это самое лучшее подспорье, так как перемотать вторичную обмотку намного проще, чем первичную.

Хорошо, если это будет стандартный унифицированный трансформатор, тогда можно по его наименованию точно определить напряжения и максимально допустимые токи вторичных обмоток. Такие трансформаторы не поддаются разборке, поэтому прежде чем его покупать, нужно сверить название с данными в справочнике.

В конце статьи есть ссылка на справочник, в котором можно найти подробную информацию о большинстве унифицированных трансформаторов советского и постсоветского производства.

Если же это будет трансформатор без опознавательных знаков, то вероятность того, что его придётся перематывать, будет стремиться к 99%. За такой транс много платить не стоит.

 

При покупке трансформатора на кольцевом магнитопроводе, следует иметь в виду, что не каждый трансформатор можно разобрать, не повредив первичной обмотки.

  1. Годится для замены вторичной обмотки.
  2. Нужно мотать первичную обмотку.
  3. Нужно мотать первичную обмотку.

Как подключить неизвестный трансформатор к сети?

Прежде чем подключать трансформатор к сети, нужно прозвонить его обмотки омметром. У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

 
Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

 
В двухкаркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

 
При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном включении предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Рассчитываем ток предохранителя обычным способом:

I = P / U

I – ток, на который рассчитан предохранитель (Ампер),

P – габаритная мощность трансформатора (Ватт),

U – напряжение сети (~220 Вольт).

Пример:

35 / 220 = 0,16 Ампер

Ближайшее значение – 0,25 Ампер.

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 — 10 10 — 200
10  -50 20 — 100
50 — 150 50 — 300
150 — 300 100 — 500
300 — 1000 200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.

Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

 
Схема подключения, при определения количества витков на вольт.

Как сфазировать обмотки трансформатора?

На электрических схемах принято отмечать жирной точной начало намотки отдельных катушек трансформатора, если это необходимо. Но, выводы катушек реального трансформатора могут не иметь вообще никакой маркировки.

При прозвонке неизвестного трансформатора, может понадобиться определить начало намотки некоторых катушек.

Например, если две отдельные части первичной обмотки включить навстречу друг другу, то они просто могут выйти из строя. На картинке изображён трансформатор, у которого первичная обмотка состоит из двух частей и эти части подключены в противофазе, что недопустимо (!).

Для фазировки обмоток можно использовать стрелочный вольтметр постоянного тока и батарейку (химический элемент питания) включённые по приведённой схеме.

Диапазон измеряемого напряжения вольтметра нужно подобрать так, чтобы было хорошо заметно движение стрелки. Начинать лучше с большего диапазона.

Если при замыкании выключателя, стрелка вольтметра отклонилась в прямом направлении, то за начало фазируемых обмоток нужно принять «+» (плюс) батареи и «+» вольтметра.

Если стрелка отклонилась в обратном направлении, обмотки подключены в противофазе относительно «+» батареи и «+» вольтметра.

Нужно иметь в виду, что при замыкании выключателя, стрелка вольтметра будет отклоняться в одну сторону, а при размыкании в противоположную, из-за возникшей ЭДС самоиндукции. Ориентироваться нужно по отклонению стрелки именно в момент включения выключателя.

 
При подключении катушек витых стержневых или штампованных стержневых трансформаторов, у которых два симметрично расположенных каркаса, нужно иметь в виду, что силовые магнитные линии выходят из одного каркаса, но входят в другой.

На картинке изображён трансформатор, у которого первичная обмотка состоит из двух симметричных катушек с выводами 1, 2 и 1’, 2’. Катушки расположены на двух симметрично расположенных друг относительно друга каркасах.

 

Например, чтобы соединить катушки такого трансформатора последовательно, нужно соединить выводы 2 и 2’, а сеть подключить к выводам 1, 1’.

Как определить количество витков вторичной обмотки?

Для расчёта количества витков вторичной обмотки необходимо знать, сколько витков приходится на один Вольт. Если количество витков первичной обмотки неизвестно, то это значение можно получить одним из предложенных ниже способов.

Первый способ.

Перед удалением вторичных обмоток с каркаса трансформатора, нужно замерить на холостом ходу (без нагрузки) напряжение сети и напряжение на одной из самых длинных вторичных обмоток. При размотке вторичных обмоток, нужно посчитать количество витков той обмотки, на которой был произведён замер.

Имея эти данные, можно легко рассчитать, сколько витков провода приходится на один Вольт напряжения.

Второй способ.

Этот способ можно применить, когда вторичная обмотка уже удалена, а количество витков не посчитано. Тогда можно намотать в качестве вторичной обмотки 50 -100 витков любого провода и сделать необходимые замеры. То же самое можно сделать, если используется трансформатор, имеющий всего несколько витков во вторичной обмотке, например, трансформатор для точечной сварки. Тогда временная измерительная обмотка позволит значительно увеличить точность расчётов.

Когда данные получены, можно воспользоваться простой формулой:

ω1 / U1 = ω 2 / U2

ω 1 – количество витков в первичной обмотке,

ω 2 – количество витков во вторичной обмотке,

U1 – напряжение на первичной обмотке,

U2 – напряжение на вторичной обмотке.

Пример:

Я раздобыл вот такой трансформатор без вторичной обмотки и опознавательных знаков.

Намотал в качестве временной вторичной обмотки – 100 витков.

Намотал я эту обмотку тонким проводом, который не жалко и которого у меня больше всего. Намотал «в навал», что значит, как попало.

Результаты теста.

Напряжение сети во время замера – 216 Вольт.

Напряжение на вторичной обмотке – 20,19 Вольт.

Читайте также  Как рассчитать производительность насоса для отопления?

Определяем количество витков на вольт при 216V:

100 / 20,19 = 4,953 вит./Вольт

Здесь на точности не стоит экономить, так как погрешность набегает при замерах. Благо, считаем-то не на бумажке.

Рассчитываем число витков первичной обмотки:

4,953 * 216 = 1070 вит.

Теперь можно определить количество витков на вольт при 220V.

1070 / 220 = 4,864 вит./Вольт

Рассчитываем количество витков во вторичных обмотках.

Для моего трансформатора нужно рассчитать три обмотки. Две одинаковые «III» и «IV» по 12,8 Вольт и одну «II» на 14,3 Вольта.

4,864 * 12,8 = 62 вит.

4,864 * 14,3 = 70 вит.

Как рассчитать диаметр провода для любой обмотки?

Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.

Рассчитать ток катушки можно по формуле:

I = P / U

I – ток обмотки,

P – мощность потребляемая от данной обмотки,

U – действующее напряжение данной обмотки.

Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками «III» и «IV».

31 / (12,8+12,8) = 1,2 Ампер

Диаметр провода можно вычислить по формуле:

Страницы:

Источник: http://meandr.org/archives/6553/3

Реактивное сопротивление трансформатора: формулы расчета

Как рассчитать сопротивление в катушке трансформатора?

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает  магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL =  ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа.

Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали.

С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для  расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном  / 100* Uв ном2  Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Отсюда находим:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

Источник: https://www.asutpp.ru/reaktivnoe-soprotivlenie-ili-impedans-transformatora.html